首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an experimental investigation on the effect of fly ash fineness on compressive strength, porosity, and pore size distribution of hardened cement pastes. Class F fly ash with two fineness, an original fly ash and a classified fly ash, with median particle size of 19.1 and 6.4 μm respectively were used to partially replace portland cement at 0%, 20%, and 40% by weight. The water to binder ratio (w/b) of 0.35 was used for all the blended cement paste mixes.Test results indicated that the blended cement paste with classified fly ash produced paste with higher compressive strength than that with original fly ash. The porosity and pore size of blended cement paste was significantly affected by the replacement of fly ash and its fineness. The replacement of portland cement by original fly ash increased the porosity but decreased the average pore size of the paste. The measured gel porosity (5.7–10 nm) increased with an increase in the fly ash content. The incorporation of classified fly ash decreased the porosity and average pore size of the paste as compared to that with ordinary fly ash. The total porosity and capillary pores decreased while the gel pore increased as a result of the addition of finer fly ash at all replacement levels.  相似文献   

2.
Fly ash is milled for 0, 30 and 90?min and used to study the role of particle size on the kinetics of geopolymer formation. The increase in particle fineness is very prominent in the initial milling stage, and then slows down due to agglomeration effect of finer fraction. The fly ash geopolymerization kinetics and its mechanism is determined using heat of reaction data measured by isothermal conduction calorimeter. The improvement in reaction rate with milling is correlated with the median particle size of the fly ash. The apparent activation energy decreases with size reduction because finer fractions are more prone to alkali activation. Although the kinetics changes with particle fineness, but no alternation is detected in the reaction mechanism, governed by nucleation and growth. The apparent activation energy evaluated by rate method is showing three major steps of geopolymerization such as dissolution, gel formation and restructuring.  相似文献   

3.
The efficiency of ternary blends containing high-calcium fly ash and slag in mitigating alkali-silica reaction (ASR) was evaluated. The concrete prism expansions showed that the ternary blends did not offer significant advantage over binary blends of portland cement and either of the individual material at the same total SCM content. The ability of a particular blend to mitigate ASR was related to its capacity to retain alkalis in its hydration products, as evaluated by an alkali leaching test. For the slag and fly ash used in this study, the capacity to retain alkalis increased with the ability of the blend to consume Ca(OH)2 during its pozzolanic reaction. For the blends investigated here, the alkali leaching test was more realistic than the accelerated mortar bar test in predicting the 2-year expansion of concrete prisms. The adopted alkali leaching test is proposed to be used as a tool to compare the efficacy of different cementing blends to mitigate ASR.  相似文献   

4.
This study analyzed and compared the characteristics of bottom and fly ashes from three municipal solid waste incinerators (MSWIs) in Taiwan. Different incineration furnaces were investigated, including: (1) fluidized bed, (2) mass-burning, and (3) mass-burning linked rotary kiln. The particle size distribution, morphology, mineralogical and chemical composition, and leaching behavior of heavy metals of ash samples were evaluated. The results revealed that three types of incineration processes have different characteristic for ashes due to transportation and mixing system inside furnace. Particle size distribution indicated that 28.5% of MSWI-B bottom ash has lower than 180 microm and 61.2% of MSWI-A fly ash has larger than the 250 microm. The leaching concentration of Pb exceeded the regulatory level set by the Taiwan EPA in fly ashes from MSWI-B and MSWI-C, and thus must be considered hazardous wastes. Specifically, the leaching concentration of heavy metals of fly ashes from MSWI-A (fluidized bed incinerator) was lower than that of the others, and was corresponded to the regulatory levels. Therefore, a fluidized bed incineration process appears a potential of handling heavy metals for ashes. The result was also provided the valuable information for incinerator design and operation.  相似文献   

5.
This paper deals with the study of corrosion level of reinforcing steel bars embedded in Portland cement mortars containing different types of fly ash. Fly ashes used were obtained by physico-chemical treatments of an original F class fly ash to modify their magnetic properties and reduce their particle size. An original fly ash (T0) and three types of modified ashes were tested according to treatment duration and magnetic properties (T60, ground fly ash; TNM, non-magnetic fraction; TM, magnetic fraction). Corrosion tests on reinforced mortar specimens with and without different types of fly ashes, cured at 40 °C, and under accelerated carbonation conditions and seawater immersion, have been performed in order to obtain conclusions on durability. From the corrosion point of view the addition of TNM in mortars showed to be much more effective than addition of the original T0 fly ash.  相似文献   

6.
For assessing the applicability of a newly proposed Chinese accelerated mortar bar test (CAMBT) to overseas aggregates and determining the appropriate aggregate size fraction for the test, the influence of aggregate particle size on ASR expansion was studied at 0.15–0.80 mm, 1.25–2.50 mm and 2.5–5.0 mm size fractions on nine aggregates from a range of sources. Correlation between expansions in the CAMBT and in the accelerated mortar bar test (AMBT), and correlations between the two accelerated tests and the Concrete Prism Test (CPT) were examined. The results indicate that, for most aggregates tested, 0.15–0.80  mm is not the most sensitive aggregate size to expansion in the CAMBT, especially at early period before 10 days. The 1.25–2.50 mm size fraction of all the nine aggregates, gives the highest early expansion (first 10 days). Correlation between expansions in the CAMBT and expansions in the AMBT is satisfactory. However, the correlations in expansions of both AMBT and CAMBT with the CPT are very poor. A better correlation between expansions in the modified CAMBT and in the CPT is obtained when 2.5–5.0 mm aggregate particles was used, but further tests are necessary to establish the full reliability of the test.  相似文献   

7.
A possible practice to prevent disorders due to alkali-silica reaction (ASR) in concretes containing reactive aggregates is the use of chemical admixtures (lithium salts) or, more commonly, mineral admixtures such as fly ash, silica fume, ground granulated slag or metakaolin. An analysis of the literature concerning ASR revealed some papers devoted to the mitigating activity of reactive aggregate powders (RAP) when associated with their parent aggregates. These RAP result from the grinding of the reactive aggregate. To verify the efficiency of this method of mitigation, tests were performed on concrete prisms cured at 60°C and 100% R.H., using four reactive aggregates, associated or not with their RAP. The results showed that the use of RAP reduced or suppressed ASR-expansion, suppressed surface cracking and counteracted the loss of compressive strength due to ASR. If these findings are confirmed by trials on other types of aggregates, the addition of RAP would be a simple way of avoiding ASR disorders.  相似文献   

8.
The use of fly ash as a mineral admixture in the manufacture of concrete has received considerable attention in recent years. For this reason, several experimental studies are carried out by using fly ash at different proportions replacement of cement in concrete. In the present study, the models are developed in genetic programming for predicting the compressive strength values of cube (100 and 150 mm) and cylinder (100 × 200 and 150 × 300 mm) concrete containing fly ash at different proportions. The experimental data of different mixtures are obtained by searching 36 different literatures to predict these models. In the set of the models, the age of specimen, cement, water, sand, aggregate, superplasticizers, fly ash and CaO are entered as input parameters, while the compressive strength values of concrete containing fly ash are used as output parameter. The training, testing and validation set results of the explicit formulations obtained by the genetic programming models show that artificial intelligent methods have strong potential and can be applied for the prediction of the compressive strength of concrete containing fly ash with different specimen size and shape.  相似文献   

9.
Bottom and fly ash collected from automobile shredder residue (ASR) incinerator have been characterized in terms of particle size, compositions, and heavy metal leaching by the standard TCLP method. Two alternative methods were also examined for the treatment of heavy metals in ASR incinerator ash from the aspect of recycling into construction or lightweight aggregate material. It was remarkable that the concentration of Cu was very high compared to common MSWI bottom and fly ash, which was probably originated from copper wires contained in ASR. As a whole, the results of characterization of ASR fly ash were in good agreement with common MSWI fly ash in terms of particle size, pH, and water-soluble compounds. It was clearly found that heavy metals could be removed thoroughly or partly from ASR fly ash through acid washing with dilute HCl solution so that the remaining fly ash could be landfilled or used as construction material. It was also found that the amount of heavy metal leachability of lightweight aggregate pellet prepared with ASR incineration ash could be significantly decreased so that the application of it to lightweight aggregate would be possible without pre-treatment for the removal of heavy metals.  相似文献   

10.
Even though Hellenic high-calcium fly ashes of different origin are widely used by the cement industry for the production of several CEM II types of cements according to EN 197-1, their systematic use in concrete still presents some difficulties. This inhibits the establishment of specifications for their addition. Main problems concerning the quality, are focused on variations in chemical and mineralogical composition, necessity for supplementary grinding, high proportion of free-CaO and periodically high proportion of SO3 content.These problems as well as the solutions, for every day use by the concrete industry, applied during the construction of a dam, are discussed, in this paper. To overcome these problems, untreated fly ash was cheaply upgraded by grinding at a specially designed ball mill, with simultaneously hydration, for the reduction of free-CaO.Details also (i) for fly ash variations in relation to their origin, (ii) the grinding plant and (iii) the industrial production of fly ash, are given. Finally, in a separate chapter of this paper, aiming to explain the treatment of fly ashes followed during their industrial production, data of the mechanical strength of mixtures of cements incorporating fly ashes with different treatment, concerning their free-CaO and their fineness, are given.  相似文献   

11.
The present study reviews the effects of fly ash fineness on the compressive and splitting tensile strength of the concretes. A fly ash of lignite origin with Blaine fineness of 2351?cm2/g was ground in a ball mill. As a consequence of the grinding process, fly ashes with fineness of 3849?cm2/g and 5239?cm2/g were obtained. Fly ashes with three different fineness were used instead of cement of 0%, 5%, 10%, and 15% and ten different types of concrete mixture were produced. In the concrete mixtures, the dosage of binder and water/cement ratio were fixed at 350?kg/m3 and 0.50, respectively. Slump values for the concretes were adjusted to be 100 ± 20?mm. Cubic samples were cast with edges of 100?mm. The specimens were cured in water at 20°C. At the end of curing process, compressive and splitting tensile strengths of the concrete samples were determined at 7, 28, 56, 90, 120 and 180?days. It was observed that compressive and splitting tensile strength of the concretes was affected by fineness of fly ash in short-and long-terms. It was found that compressive and tensile strength of the concretes increased as fly ash fineness increased. It was concluded that Blaine fineness value should be above 3849?cm2/g fineness of fly ash to have positive impact on mechanical properties of concrete. The effects of fly ash fineness on the compressive and splitting tensile strength of the concretes were remarkably seen in the fly ash with FAC code with fineness of 5235?cm2/g.  相似文献   

12.
High-calcium fly ashes (ASTM Class C) are being widely used as a replacement of cement in normal and high strength concrete. In Greece such fly ashes represent the majority of the industrial by-products that possess pozzolanic properties. Even thought the contribution of factors, such as fineness and water/binder ratio, on the performance of fly ash/cement (FC) systems has been a common research topic, little work has been done on examining whether and to what extent reactive silica of fly ashes affects the mechanisms occurring during their hydration.The work presented herein describes a laboratory scale study on the influence of active silica of two high-lime fly ashes on their behavior during hydration. Volumes up to 30% of Greek high-calcium fly ashes, diversified both on their reactive silica content and silicon/calcium oxides ratio, were used to prepare mixes with Portland cement. The new blends were examined in terms of compressive strength, remaining calcium hydroxide, generation of hydration products and microstructural development. It was found that soluble silica of fly ashes holds a predominant role especially after the first month of the hardening process. At this stage, silica is increasingly dissolved in the matrix forming additional cementitious compounds with binding properties, principally a second generation C–S–H. The rate however, that fly ashes react in FC systems seems to be independent of their active silica content, indicating that additional factors such as glass content and fineness should be taken into account for predicting the contribution of fly ashes in the final performance of pozzolanic cementitious systems.  相似文献   

13.
Fly ash characteristics cannot be assumed to be constant between power stations as they are highly dependent on the coal source and burning conditions. It is critical to understand the characteristics of fly ash in order to produce geopolymers suitable for high temperature applications. We report on the characterisation of fly ash from three Australian power stations in terms of elemental composition, phase composition, particle size, density and morphology. Geopolymers were synthesised from each of the fly ashes using sodium silicate and sodium aluminate solutions to achieve a range of Si:Al compositional ratios. Mechanical properties of geopolymer binders are presented and the effect of the source fly ash characteristics on the hardened product is discussed, as well as implications for high temperature applications. It was found that the twenty eight day strength of geopolymers is largely dependent on the sub 20 μm size fraction of the fly ash. Strength loss after high temperature exposure was found to be dependent on the concentration of iron in the fly ash precursor and the Si:Al ratio of the geopolymer mixture.  相似文献   

14.
This paper reports the results of experiments done to examine the explosibility of the waste products (fly ash and bottom ash) from pulverized fuels (coal and petroleum coke). Tests were conducted for the fly and bottom ashes alone and also for selected fly ashes blended with the fuels. The explosion parameters of interest were explosion pressure and rate of pressure rise. The fly ashes showed no propensity to explode, whereas one of the bottom ashes did show limited explosibility. Both findings can be explained with reference to the volatile matter content of the ashes. Admixture of either coal or petroleum coke with fly ash resulted in explosible mixtures at volatile contents in the range of 7-13%, with the value being dependent on the composition of the mixture components and their particle sizes.  相似文献   

15.
This article examines the structural characteristics of four South African fly ashes and their structural changes with β-cyclodextrin so as to compare their structural responses to fly ash-β-cyclodextrin (FA-βCD) composite. The four different fly ashes, obtained from different power stations in South Africa were subjected to x-ray fluorescence (XRF), particle size distribution, x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. FA-βCD composites were subjected to XRD and FTIR analyses. The XRF analysis showed that all the fly ash samples used are in class F with SiO2 + Al2O3 + Fe2O3 greater than 70%. The average particle sizes of all fly ash samples were less than 0.075 mm; the major mineral phase in all fly ash samples was quartz (SiO2). The FTIR analysis showed Si-O-Si asymmetric and Al-O symmetric stretching vibrations in all fly ash samples. FA-βCD composites for all the fly ashes revealed additional upcoming peaks between diffraction angles (2θ) 10° and 25°, which was not in the raw fly ashes. Shift in FTIR spectra frequencies and an additional peak at approximately 1155 cm?1 attributed to O-Si-O bending vibration were observed in all the composite samples.  相似文献   

16.
One of the main issues associated with fly ash is the variation in the fineness of fly ash produced within a plant and between thermal power plants, due to the variation in the quality of coal used and the production technique adopted in which pelletization of fly ash becomes complex. In this paper, the influence of fineness of fly ash is studied by collecting typical samples of fly ash from two thermal power plants. Significance of the factors influencing the pelletization of fly ash was statistically determined by adopting 24 with eight run and 25 with sixteen run fractional factorial design for fly ash with fineness of 414 m2/kg and 257 m2/kg, respectively. Finer fly ash exhibits higher pelletization efficiency as compared to coarser fly ash. Addition of clay binders like bentonite and kaolinite enhanced the pelletization efficiency of coarser fly ash. Amount of binder content and moisture content varies with type of binder used (with fly ash having a fineness of 257 m2/kg), which is attributed to the difference in plasticity index. Addition of clay binder changes the relative influence of pelletization factors.  相似文献   

17.
In the present work, compressive strength of inorganic polymers (geopolymers) produced of seeded fly ash and rice husk bark ash has been investigated. Different specimens made from a mixture of fly ash and rice husk bark ash in fine and coarse form were subjected to compressive strength tests at 7 and 28 days of curing. The curing regime was different: one set of the specimens were cured at room temperature until reaching to 7 and 28 days and the other sets were oven cured for 36 h at the range of 40-90 °C and then cured at room temperature until 7 and 28 days. The results indicate that in both 7 and 28 days regimes, the highest strengths are related to the specimens by SiO2/Al2O3 ratio equals 2.99 cured at 80 °C. For these specimens, those contained finer fly ash particles show more compressive strength. Thermogravimetric analysis and Fourier transform infrared spectroscopy both also are in agreement with the obtained results from compressive strength tests. In addition, SEM micrographs of the specimens show that the finer the particle size of the utilized ashes, the denser the microstructure which confirms the results obtained by the strength tests.  相似文献   

18.
This study examines the suitability of Talcher coal fly ash for stowing in the nearby underground coal mines based on their physico-chemical and mineralogical analysis. The physical properties such as bulk density, specific gravity, particle size distribution, porosity, permeability and water holding capacity etc. have been determined. From the chemical characterization it is found that the ash samples are enriched predominantly in silica (SiO2), alumina (Al2O3) and iron oxides (Fe2O3), along with a little amount of CaO, and fall under the Class F fly ash category. In addition, the mineral phases identified in the ash samples are quartz, mullite, magnetite, and hematite. The particle morphological analysis revealed that the ash particles are almost spherical in shape and the bulk ash porous in nature. From the particle size and permeability point of view, pond ash may be considered a better stowing material than fly ash.  相似文献   

19.
ASTM C1567 [1] is a commonly used accelerated test method to determine the required dosage of supplementary cementitious materials (SCMs) to mitigate alkali–silica reaction (ASR) in mixtures containing reactive siliceous aggregates. Past research suggested that fly ash and other SCMs inhibit ASR, primarily through alkali dilution and binding. In ASTM C1567, however, the alkalinity of the pore solution is largely influenced by the penetration of NaOH from the external soak solution; and this could erase the beneficial effects of alkali dilution and binding. To better understand why fly ash inhibits ASR in this test, the present study performs a quantitative evaluation of six potential ASR mitigation mechanisms: (1) alkali dilution, (2) alkali binding, (3) mass transport reduction, (4) increasing tensile strength, (5) altering ASR gel, and (6) reducing aggregate dissolution rate. The results suggest that (2), (3), (4), and (6) are the primary mitigation mechanisms, while (1) and (5) show a negligible impact.  相似文献   

20.
By using an excitation energy of 27.0 keV, synchrotron radiation-induced micro-X-ray fluorescence (SR-microXRF) is employed to extract information regarding the composition and distribution of Cd-bearing phases in municipal solid waste (MSW) and biomass fly ashes. Significance of observation is based on statistics of totally more than 100 individual MSW and biomass fly ash particles from a fluidized bed combustion (FBC) plant. Cd concentrations in the parts-per-million range are determined. In general, although previous leaching studies have indicated Cd to be predominant in the smaller-size ash particles, in the present study Cd is more evenly distributed throughout all the particle sizes. For MSW fly ashes, results indicate the presence of Cd mainly as CdBr2 hot-spots, whereas for biomass fly ashes, which exhibit lower CdX2 concentration, a thin Cd layer on/in the particles is reported. For both ashes, Ca-containing matrixes are found to be the main Cd-bearing phases. Support for this observation is found from independent first-principles periodic density functional theory calculations. The observations are condensed into a schematic mechanism for Cd adsorption on the fly ash particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号