首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. However, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.  相似文献   

2.
To generate a substantial amount of power, Wave Energy Converters (WECs) are arranged in several rows or in a ‘farm’. Both the power production and cost of a farm are lay-out dependent.In this paper, the wave power redistribution in and around three farm lay-outs in a near shore North Sea wave climate, is assessed numerically using a time-dependent mild-slope equation model. The modelling of the wave power redistribution is an efficient tool to assess the power production of a farm. Further, for each lay-out an optimal (low cost) submarine cable network is designed. The methodology to assess the power production and cost of a farm of WECs is applied to the Wave Dragon Wave Energy Converter (WD–WEC). The WD–WEC is a floating offshore converter of the overtopping type, which captures the water volume of overtopped waves in a basin above mean sea level and produces power when the water drains back to the sea through hydro turbines.It is observed that the cable cost is relatively small compared to the cost of the WD–WECs. As a result, WD–WECs should be installed in a lay-out to increase power production rather than decrease cable cost, taking spatial and safety considerations into account. WD–WECs arranged in a single line produce the highest amount of power, but require an available sea area with a large width (51 km). Installing a single line of WD–WECs in front of a farm of wind turbines increases the time window for accessing the wind farm (applied to Horns Rev II – significant wave height smaller than 1–2 m during 8 h at minimum) by 9–14%.  相似文献   

3.
This paper addresses model predictive control (MPC) of highly-coupled clusters of sea wave energy converters (WECs). Since each WEC is not only a wave absorber but also a wave generator, the motion of each WEC can be affected by the waves generated by its adjacent WECs when they are close to each other. A distributed MPC strategy is developed to maximize the energy output of the whole array and guarantee the safe operation of all the WECs with a reasonable computational load. The system for an array is partitioned into subsystems and each subsystem is controlled by a local MPC controller. The local MPC controllers run cooperatively by transmitting information to each other. Within one sampling period, each MPC controller performs optimizations iteratively so that a global optimization for the whole array can be approximated. The computational burden for the whole array is also distributed to the local controllers. A numerical simulation demonstrates the efficacy of the proposed control strategy. For the WECs operating under constraints explored, it is found that the optimized power output is an increasing function of degree of WEC–WEC coupling. Increases in power of up to 20% were achieved using realistic ranges of parameters with respect to the uncoupled case.  相似文献   

4.
The oscillating water column (OWC) is a more common type of wave energy converter (WEC) that has been the subject of the study and development for several decades. Multi–chamber oscillating water column (MC–OWC) devices or arrays have the advantage of being more efficient in energy extraction compared to a single chamber system, particularly in more chaotic sea states. A variety of single and array OWC devices have been proposed and studied on a small–scale, whereas few large–scale devices have been tested under ocean wave conditions. This paper provides a concise review of the current state of MC–OWC device development in laboratory conditions. The review highlights explicitly the main stages of MC–OWC device development for one ongoing study as an example. This review was based on the available information in the literature from 2003 to 2012, in addition, further work is presented as part of the current study at the University of Technology Sydney. This study is from 2015 to 2018. The discussion shows the challenges that a device needs to overcome to be more competitive with other WECs in the global of wave energy converter area.  相似文献   

5.
In this paper the feasibility of wave energy exploitation off the Italian coasts is investigated. At this aim, the energy production and the performance characteristics of three of the most promising and documented wave energy converters (AquaBuOY, Pelamis and Wave Dragon) are estimated for two of the most energetic Italian locations. The sites are Alghero, on the western coast of Sardinia and Mazara del Vallo, on the Sicily Strait and they have respectively an average annual wave power of 10.3 kW/m and 4 kW/m, and an available annual wave energy of 90 MWh/m and 35 MWh/m.The energy production of the hypothetical wave farms is calculated based on the performance matrices of the wave energy converters (WECs) and on 21 years of wave buoy records, covering the period from 1990 to 2011. The estimated capacity factors are low (between 4% and 9%) compared to the ones obtained for the same wave energy converters in other locations and are affected by a strong seasonal variability. This indicates that the considered WECs are oversized with respect to the local wave climate and that a more efficient energy conversion would be obtained if they were downscaled according to the typical wave height and period of the study sites. As a consequence of the optimization of the device scale, at Alghero the deployment of 1:2.5 AquaBuOY, Pelamis or Wave Dragon devices would result in capacity factors around 20% and in a quite constant energy production throughout the year. In fact, the size reduction of the wave energy converters allows to capture the energy of the small waves which would otherwise be lost with the original WECs.The results of the present work suggest that deploying classic wave energy converters in Italian seas would not be cost effective but if the devices could accommodate a proper downscaling, their performance in energy conversion would become economically attractive also for some Italian locations.  相似文献   

6.
Time-dependent mild-slope equations have been extensively used to compute wave transformations near coastal and offshore structures for more than 20 years. Recently the wave absorption characteristics of a Wave Energy Converter (abbreviated as WEC) of the overtopping type have been implemented in a time-dependent mild-slope equation model by using numerical sponge layers. In this paper the developed WEC implementation is applied to a single Wave Dragon WEC and multiple Wave Dragon WECs. The Wave Dragon WEC is a floating offshore converter of the overtopping type. Two wave reflectors focus the incident wave power towards a ramp. The focussed waves run up the ramp and overtop in a water reservoir above mean sea level. The obtained potential energy is converted into electricity when the stored water drains back to the sea through hydro turbines. The wave reflectors and the main body (ramp and reservoir) are simulated as porous structures, exhibiting the same reflection, respectively absorption characteristics as obtained for the prototype Wave Dragon WEC. The wake effects behind a single Wave Dragon WEC are studied in detail for uni- and multidirectional waves. The shadow zone indicating the wake effect is decreasing with increasing directional spreading. The wake in the lee of a farm of five Wave Dragon WECs, installed in a staggered grid (3 WECs in the first row and 2 WECs in the second row), is calculated for three in-between distances of respectively D, 2D and 3D, with D the distance between the tips of the wave reflectors of a single WEC. As a result, a farm of five Wave Dragon WECs installed in a staggered grid with an in-between distance of 2D is preferred, when taking cost and spatial considerations into account.  相似文献   

7.
The performance of three different types of wave energy converters (WECs) is evaluated at hundreds of Canadian locations using wave activity data made available by the Marine Environmental Data Service of Canada. Two Atlantic and three Pacific locations are found where at least one of these devices operates with a capacity factor of greater than 20%, while also being located close to urban/industrial centers. The economics of a nominal 25 GWh wave power plant are investigated at these five locations and compared among the three WEC types using two indicators: the 25-year life-cycle cost, and the required price of electricity for a 10-year simple payback period. The lowest required electricity price for a 10-year payback is $0.089/kWh, and occurs at a location near the Hibernia Oil Platform using the AquaBuOY WEC. The highest annual capacity factor is 32.1%, which occurs near the Hibernia Oil Platform when using the WaveDragon WEC. The 25-year life-cycle cost evaluations suggest that wave power plants at locations near Ucluelet, St. John's, and the Hibernia Oil Platform could all be profitable using either the AquaBuOY or the WaveDragon if a price of electricity between $0.10 and $0.15/kWh can be secured, depending on location and device.  相似文献   

8.
Sea waves energy represents a renewable and sustainable energy resource, that nevertheless needs to be further investigated to make it more cost-effective and economically appealing. A key step in the process of Wave Energy Converters (WEC) deployment is the energy resource assessment at a sea site either measured or obtained through numerical model analysis. In these kind of studies, some approximations are often introduced, especially in the early stages of the process, viz. waves are assumed propagating in deep waters without underneath ocean currents. These aspects are discussed and evaluated in the Adriatic Sea and its northern part (Gulf of Venice) using locally observed and modeled wave data. In particular, to account for a “state of the art” treatment of the Wave–Current Interaction (WCI) we have implemented the Simulating WAves Nearshore (SWAN) model and the Regional Ocean Modeling System (ROMS), fully coupled within the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) system. COAWST has been applied to a computational grid covering the whole Adriatic Sea and off-line nested to a high-resolution grid in the Gulf of Venice. A 15-year long wave data set collected at the oceanographic tower “Acqua Alta”, located approximately 15 km off the Venice coast, has also been analyzed with the dual purpose of providing a reference to the model estimates and to locally assess the wave energy resource. By using COAWST, we have quantified for the first time to our best knowledge the importance of the WCI effect on wave power estimation. This can vary up to 30% neglecting the current effect. Results also suggest the Gulf of Venice as a suitable testing site for WECs, since it is characterized by periods of calm (optimal for safe installation and maintenance) alternating with severe storms, whose wave energy potentials are comparable to those ordinarily encountered in the energy production sites.  相似文献   

9.
M.R. Belmont 《Renewable Energy》2010,35(12):2812-2820
The potential of controlling wave energy converters, (WEC), by deterministic prediction of large damaging waves is introduced and shown to offer very substantial increases in the annual average power output of such devices. Results obtained for idealised WEC models show that the potential exists for this increase to be at least a factor of two. Numerical simulations of actual dynamical models for both point absorbers and directionally sensitive devices employing practical control strategies show that most of this potential can actually be realised. The control of large scale wave farms using quiescent period predictive control is likely to be most cost effective using master/slave WEC systems. To achieve the computational savings that will allow this strategy analytic approximations are required for the response of WECs with time varying coefficients, preliminary forms of these have also been introduced.  相似文献   

10.
[目的]为了响应国家集约用海,发展清洁能源,助力碳中和,对海上风电-波浪能装置多能融合模式进行初步分析,对波能浮子进行优化设计,以获得更高的功率输出。[方法]依据势流理论,对漂浮式风机平台-波能浮子阵列进行仿真计算,分析浮子的外形尺寸和固有周期对浮子的输出功率的影响。[结果]仿真结果表明:同一固有周期下,波能浮子越扁平,波能浮子阵列的总发电功率越大,且浮子的经济性差异很小。对于海况下,不同固有周期的波能浮子阵列经济性差异较大,因此要综合分析考虑。[结论]在已知海域海况条件下,可以通过对波能浮子固有周期和外形尺度进行优化设计,使波能浮子获得更高的功率输出,提高单位海域能量产出。  相似文献   

11.
One of the main challenges that our society must overcome in this century is that of finding alternative energy sources to fossil fuels. These, ideally, must be inexpensive, less polluting than current fuels and available for a substantial time. One promising alternative is hydrogen, which has the great advantage that it can be produced by coupling renewable energy devices with water electrolysis. Several projects devoted to connecting photovoltaic and wind systems with electrolysis devices have been successful; however, little research has been done into the coupling of ocean wave energy converters with water electrolysis. The work here proposes a basic system that stores the energy from waves in the form of hydrogen. The WEC considered is a novel design known as a Blow-Jet, which captures waves and converts them into a water jet. The performance of the Blow-Jet is found to depend more on wavelength than on wave height. The electrolyser results show, at 0.200 A and 1.88 V, that the electrolysis of water produces 0.082 Nl h−1 of hydrogen and a current efficiency (ηI) of 90.58%.  相似文献   

12.
A realistic performance analysis of oscillating water column wave energy converters (WECs) addresses to a set of non-linear differential equations that need to be integrated in time, by using a stochastic approach, under the hypothesis of random wind-generated sea waves, for all the sea states which characterize the location of the system. Non-linearities of the differential equations have several origins:
• minor and major losses of the unsteady flow of water and air;
• compressibility of air and heat exchange with the walls of the air chamber;
• non-linear characteristics of the turbine.
Under the hypothesis of random sea waves with Gaussian distribution, the authors propose an original methodology for linearizing the differential equations that describe the flow motion inside a wholly submerged WEC. Under such hypothesis, the linearized model can be used for predicting the power output by means of the calculations in the frequency domain and for control design. The developed methodology has been applied to the estimation of the performance of the new “resonant sea wave energy converters”, called REWEC, patented by Boccotti in 1998, and consisting of several caissons, characterized by a structure similar to the caissons of the traditional breakwaters and placed on the seabed, close one to each other, to form a submerged breakwater. Each caisson is connected to a vertical duct wholly beneath the sea level, where a hydraulic Wells turbine is placed.The matching between turbine and resonance characteristic of the system is carefully analysed in order to maximize the energy conversion efficiency.Some results, given for a small installation in the Mediterranean sea, confirm that the REWEC system is able to absorb a large share of the incident wave energy due to a very simple regulation system which permits the tuning on sea states with different significant heights.  相似文献   

13.
During the past few decades, wave energy has received significant attention for harnessing ocean energy. Industry has proposed many technologies and, based on their working principle, these technologies generally can be categorized into oscillating water columns, point absorbers, overtopping systems, and bottom-hinged systems. In particular, many researchers have focused on modeling the point absorber, which is thought to be the most cost-efficient technology to extract wave energy. To model such devices, several modeling methods have been used such as analytical methods, boundary integral equation methods and Navier–Stokes equation methods. The first two are generally combined with the use of empirical solution to represent the viscous damping effect, while the last one is directly included in the solution. To assist the development of wave energy conversion (WEC) technologies, this paper extensively reviews the methods for modeling point absorbers.  相似文献   

14.
This study evaluates the influence of wave climate tunability on the performance of a generic Wave Energy Converter (WEC) for different climate scenarios. The generic WEC is assumed to be composed of an array of heaving, floating cylinders. In this study, two natural periods for the cylinders of 4 s and 8 s (typical of enclosed seas and the mean Atlantic swell, respectively) and a location-tunable cylinder are considered to evaluate the influence of tuning on the power performance of the cylinder. The WEC power matrix is computed using a frequency domain model, and the performance of the WEC is evaluated along the global coasts; the met-ocean data originated from the global reanalysis database (GOW) from Reguero et al. (2012). The performance of the WEC is evaluated using two parameters: the capture width ratio (CWR), which evaluates the efficiency of the converter at each location, and the kW/Ton (KWT) parameter, which evaluates the efficiency of the converter using “economic” terms. Tuning a converter for each location displayed a positive CWR; however, the KWT was low after WEC tuning because of the weight of the structures required to tune the converter that experiences high peak periods.  相似文献   

15.
As a renewable energy, the assessment of wave power potential around a country is crucial. Knowledge of the temporal and spatial variations of wave energy is required for locating a wave power plant. This study investigates the variations in wave power at 19 locations covering the Indian shelf seas using the ERA-Interim dataset produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim data is compared with the measured wave parameters in the Arabian Sea and the Bay of Bengal. Along the western shelf seas of India, the seasonal oscillations lead to variation of the wave power from the lowest seasonal mean value (2.6 kW/m) in the post-monsoon period (October–January) to the highest value (25.9 kW/m) in the south-west monsoon (June–September) period. Significant (10–20%) inter-annual variations are detected at few locations. The mean annual wave power along the eastern Indian shelf seas (2.6–9.9 kW/m) is lower than the mean annual wave power along the western part (7.9–11.3 kW/m). The total annual mean wave power available along the western shelf seas of India is around 19.5 GW. Along the eastern shelf seas, it is around 8.7 GW. In the Indian Shelf seas, the annual mean wave power is highest (11.3 kW/m) at the southern location (location 11), and the seasonal variation in wave power is also less. Hence, location 11 is a better location for a wave power plant in the Indian shelf seas.  相似文献   

16.
In this paper a generic methodology is presented that allows the impacts of climate change on wave energy generation from a wave energy converter (WEC) to be quantified. The methodology is illustrated by application to the Wave Hub site off the coast of Cornwall, UK. Control and future wave climates were derived using wind fields output from a set of climate change experiments. Control wave conditions were generated from wind data between 1961 and 2000. Future wave conditions were generated using two IPCC wind scenarios from 2061 to 2100, corresponding to intermediate and low greenhouse gas emissions (IPCC scenarios A1B and B1 respectively). The quantitative comparison between future scenarios and the control condition shows that the available wave power will increase by 2–3% in the A1B scenario. In contrast, the available wave power in the B1 scenario will decrease by 1–3%, suggesting, somewhat paradoxically, that efforts to reduce greenhouse gas emissions may reduce the wave energy resource. Meanwhile, the WEC energy will yield decrease by 2–3% in both A1B and B1 scenarios, which is mainly due to the relatively low efficiency of energy extraction from steeper waves by the specific WEC considered. Although those changes are relatively small compared to the natural variability, they may have significance when considered over the lifetime of a wave energy farm. Analysis of downtime under low and high thresholds suggests that the distribution of wave heights at the Wave Hub will have a wider spread due to the impacts of climate change, resulting in longer periods of generation loss. Conversely, the estimation of future changes in joint wave height-period distribution provides indications on how the response and power matrices of WECs could be modified in order to maintain or improve energy extraction in the future.  相似文献   

17.
An assessment of nearshore wave energy resource along the Portuguese coast is presented, focusing on identify appropriate locations for testing and developing Wave Energy Converter (WEC) for commercial exploit. The analysis covers the whole west seaside, to which a partition defined by 7 linear sections parallel to the coastline at 50 m depth was considered. Available wave energy at each linear sector was calculated from nearshore wave parameters, using as input the offshore wave conditions provided by a 15-year ocean wind-wave model simulation and considering a simplified but well-established analytical procedure for shoreward wave transformation. Two alternative measures of the nearshore wave energy resource were considered, the standard omni-directional wave power density and the more restricted normally-directed wave energy flux.Offshore wave direction combine to shoreline orientation proved to be determinant on the evaluation of the wave energy resource in each section, since sectors of the shoreline directly facing the offshore annual average wave direction have limited reduction in available wave energy as compare to offshore values. Independently of the wave energy measured criteria used, the analysis suggests that the sector from Peniche to Nazaré is the more suitable location for nearshore wave energy exploitation, with annual wave energy around 200 MWh m−1, closely followed by the adjacent sector from Nazaré to Figueira da Foz.  相似文献   

18.
In this study, a numerical model based on the complete solution of the Navier–Stokes equations is proposed to predict the behavior of the submerged circular cylinder wave energy converter (WEC) subjected to highly nonlinear incident waves. The solution is obtained using a control volume approach in conjunction with the fast-fictitious-domain-method for treating the solid objects. To validate the model, the numerical results are compared with the available analytical and experimental data in various scenarios where good agreements are observed. First, the free vibrations of a solid object in different non-dimensional damping ratios and the free decay of a heaving circular cylinder on the free surface of a still water are simulated. Next, the wave energy absorption efficiency of a circular cylinder WEC calculated from the model is compared with that of the available experiments in similar conditions. The results show that tuning the converter based on the linear theory is not satisfactory when subjected to steep incident waves while the numerical wave tank (NWT) developed in the current study can be effectively employed in order to tune the converter in such conditions. The current NWT is able to predict the wave-body interactions as long as the turbulence phenomena are not important which covers a wide range of Reynolds and Keulegan-Carpenter numbers.  相似文献   

19.
Offshore and inshore wave energy assessment: Asturias (N Spain)   总被引:1,自引:0,他引:1  
The offshore and inshore wave energy resource in Asturias (N Spain) is studied using wave buoy data and a hindcast dataset spanning 44 years (1958–2001). Offshore average wave power and annual wave energy values are found to exceed 30 kW/m and 250 MWh/m, respectively, at 7 of the 11 study sites. This substantial resource is characterised in terms of the sea states involved. Most of the energy is provided by IV quadrant waves with significant wave heights between 2 m and 5 m and energy periods between 11 s and 13 s. After analysing the offshore resource, numerical modelling is used to investigate the inshore wave patterns. A coastal wave model is validated with wave buoy data and applied to three case studies representative of storm, winter and summer conditions. Inshore wave energy concentration areas, of interest as prospective wave farm sites, are found to occur west of Cape Vidio and on the western side of the Cape Peñas peninsula. The methodology used in this investigation may serve as a model for wave energy assessments in other regions, especially where both the offshore and inshore resources are of consequence.  相似文献   

20.
The offshore wave energy resource in the East China Sea (ECS) off the coast of the southern East China is assessed using wave buoy data covering the period of 2011−2013. It is found that the averaged offshore wave power was approximately 13 kW m−1 in the region of interest. Most of the offshore wave energy in the ECS is contributed by the sea states with significant wave heights between 1.5 m and 3.5 m and with wave energy periods between 6 s and 8 s. Seasonal variations are detected in the wave characteristics of significant wave height and wave power. The predominant wave directions are mainly from the II quadrant and the IV quadrant, respectively, in winter and summer, in accordance with the monsoon characteristics in the ECS. Wave heights, periods and power are generally higher in winter and autumn, and weaker in spring and summer; however, extreme values occur in some summer and autumn months due to the extreme conditions caused by typhoons passing over this region. These extreme sea states do not contribute much to the total annual energy, mainly because of their low occurrence, but may bring risks to the wave energy converters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号