首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
李建民  姜茂发 《钢铁》2017,52(9):48-53
 针对太钢采用连铸工艺并使用低碱度保护渣生产高锰钢20Mn23AlV铸坯表面存在的微裂纹问题,通过现场取样、渣-金反应等试验,结合金相显微镜、扫描电镜和能谱分析等手段系统研究了表面裂纹的特征和形成过程,在此基础上研究了现有低碱度保护渣在使用前后的成分变化、熔点、黏度和传热等指标的变化情况。结果表明,生产过程中低碱度保护渣中的SiO2被钢液中的铝还原,导致液态渣成分发生变化,从而影响了坯壳与结晶器铜板之间的润滑和传热等性能,导致了高锰钢20Mn23AlV铸坯表面微裂纹缺陷。连铸生产钢液中含有强还原性元素(铝)时,应采用低SiO2质量分数的连铸保护渣,以减少高锰钢连铸坯表面微裂纹的产生,提高铸坯表面质量,实现高锰钢连铸生产顺行。  相似文献   

2.
张增武 《山西冶金》2012,35(6):21-23,67
通过对20Mn23AlV冶炼和连铸技术的研究与开发,结合工业化生产实践,解决了该钢在冶炼和连铸生产中出现的一些问题,成功生产出无纵裂且合格的连铸坯,铸坯和热轧板质量不低于模注钢,连铸坯综合成材率可达到86.3%,比钢锭成材率提高18%。经过生产实践提出:解决20Mn23AlV纵裂问题,需在提高结晶器保护渣性能上做更深入的研究。  相似文献   

3.
李晓军  李欢  李振 《特殊钢》2021,42(4):39-41
研究了 1.5%~2.5% Al的20Mn23AlV钢200 mm × 1260 mm铸坯表面纵裂纹产生机理。结果表明:20Mn23AlV表面纵裂纹与结晶器保护渣变性有关。保护渣渣中加入5.49%的Li2O大幅提高了该钢种浇注过程保护渣理化指标的稳定性,且有利于将该钢种连铸坯表面纵裂发生几率由23.8%降至0.3%以下。  相似文献   

4.
《特殊钢》2021,(4)
研究了 1.5%~2.5% Al的20Mn23AlV钢200 mm × 1 260 mm铸坯表面纵裂纹产生机理。结果表明:20Mn23AlV表面纵裂纹与结晶器保护渣变性有关。保护渣渣中加入5.49%的Li_2O大幅提高了该钢种浇注过程保护渣理化指标的稳定性,且有利于将该钢种连铸坯表面纵裂发生几率由23.8%降至0.3%以下。  相似文献   

5.
连铸保护渣结晶性能与16Mn铸坯表面微裂纹的关系   总被引:2,自引:1,他引:1  
王谦  王雨  迟景灏  谢兵  何宇明  朱斌  屈毅  孙毅杰 《钢铁》2003,38(4):24-26
针对 16Mn系列高强度低合金钢连铸坯轧制中厚板生产中 ,因表面微裂纹钢板报废率高的问题 ,在采用镀层结晶器的基础上 ,研究了保护渣结晶性能对铸坯表面微裂纹及钢板微裂纹报废率的影响规律  相似文献   

6.
针对Mn13钢种在板坯连铸生产时发生表面纵裂纹缺陷的问题,结合Mn13材料凝固的特点,在工业生产中对浇铸过热度、拉速、水口对中、水口插入深度等工艺参数进行摸索,优化了保护渣化渣条件,保证了液渣在弯月面的均匀流入,改善了结晶器润滑与铸坯传热,控制了初生坯壳生长的均匀性,从而解决了Mn13板坯的表面纵裂纹缺陷,实现了Mn13的板坯多炉连铸生产,提高了铸坯合格率,由50%以下提高到96%.  相似文献   

7.
杨永超  白晋钢  李宏 《炼钢》2019,35(5):63-67
采用连铸工艺生产的20Mn23AlV钢铸坯(w(C)=0.04%~0.12%,w(Si)≤0.50%,w(Mn)=21.50%~25.00%,w(P)≤0.030%,w(S)≤0.030%,w(Al)=1.50%~2.50%,w(V)=0.04%~0.10%),在热轧过程中容易出现边部开裂缺陷,严重影响了正常生产。通过对铸坯缺陷部位进行化学成分分析和扫描电镜分析,认定中厚板边部开裂的主要原因是:在第三脆性温度区间,氮化铝在奥氏体晶界析出,降低奥氏体晶界的结合能,进而降低了钢的塑性;钢中锰含量高,凝固过程中柱状晶组织发达,易形成穿晶组织、裂纹等缺陷;在连铸生产过程发生卷渣,卷入铸坯的夹杂物与基体的延展性不同,随着轧制的进行而产生裂纹。对炼钢及连铸过程工艺参数进行了优化,降低了钢中氮化铝夹杂数量,减少了保护渣卷入钢水中的频次,中厚板边部开裂率由28%降低至3%以下。  相似文献   

8.
白建军 《甘肃冶金》2009,31(2):16-18
连铸结晶器保护渣对铸机的浇注和铸坯表面质量有着显著影响。从酒钢CSP连铸机投产以来一直使用进口保护渣,2007年6月生产SS400和Q345B钢种时出现大量裂纹缺陷,后来采用国产保护渣,裂纹缺陷得到控制。  相似文献   

9.
采用立式连铸生产Fe-30Ni-20Cr合金(N08810),开展了连铸坯纵裂纹试验分析和高温力学拉伸试验等研究。金相试验结果表明,纵裂纹两侧晶粒度不均匀,裂纹四周已经被氧化;电子探针能谱分析发现,裂纹内部含有Na、K等保护渣典型成分元素;高温力学性能试验结果表明,Fe-30N i-20Cr合金连铸坯纵向裂纹敏感性明显高于横向铸坯,且比不锈钢304和310S更易出现纵裂纹。将连铸冷却强度由强冷改为弱冷、采用合适熔点和黏度的保护渣将有利于降低N08810连铸坯纵裂纹的出现几率。  相似文献   

10.
针对攀钢连铸 Q2 35 G等包晶钢生产中出现的铸坯表面裂纹问题 ,在调查分析裂纹特征及其产生原因的基础上 ,发现保护渣传热过强和保护渣流入不均是诱发角横裂产生的主要原因。通过对保护渣结晶特性的研究 ,开发出了低碱度 (Ca O/ Si O2 <1.0 )、高结晶率的新型包晶钢用连铸保护渣。工业试验表明 ,研制的保护渣具有良好的使用效果 ,所浇铸坯表面质量优良 ,铸坯裂纹较少 ,表面角横裂发生率降低到 4 .19% ,纵裂发生率为 3.4 2 % ,且保护渣润滑作用良好 ,未发生漏钢事故。  相似文献   

11.
中碳高铝钢由于铝元素含量高,其包晶反应及渣钢反应均很强烈,导致铸坯表面缺陷多发,经常出现纵裂、凹陷等缺陷。针对这些缺陷,从中碳高铝钢钢种成分出发,研究了钢种的包晶反应特性及裂纹敏感性。在此基础上,结合钢渣反应,对现有保护渣及连铸工艺进行了优化。工业生产实践表明,优化后的保护渣及相关连铸工艺参数,能有效控制中碳高铝表面缺陷的产生,避免纵裂及凹陷等缺陷的发生。  相似文献   

12.
针对唐山中厚板材有限公司塑料模具钢SM50钢板表面裂纹缺陷,采用生产工艺情况调查、能谱分析和金相分析相结合的方法,对裂纹产生的原因进行了深入分析。结果表明,SM50钢板表面裂纹缺陷并非铸坯原生裂纹导致,而是由于连铸坯在处于两相区时热装,铸坯晶粒度极不均匀导致的热装裂纹。通过改进现有工艺,提出了对铸坯进行下线缓冷、温装入炉的改进措施。新工艺实施后,SM50钢热装裂纹缺陷比例由原来的4.24%下降到0.30%以下,钢板表面裂纹率大幅降低。  相似文献   

13.
摘要:传统CaO-SiO2系保护渣在浇铸高锰高铝钢时,渣中SiO2易被钢中Al还原,造成保护渣成分改变和性能恶化,危害铸坯表面质量和连铸过程顺行。为了抑制钢 渣反应,旨在减少渣中氧化性组分的低反应性,CaO-Al2O3基渣系是重要选择方向。在评估高锰高铝钢凝固特性和传统反应性保护渣基础上,提出了低反应性保护渣基本性能要求,并采用单纯形法设计了CaO-Al2O3基保护渣系的试样组成。通过测试实验渣样的熔化特性和流动特性,获得了5组低反应性连铸保护渣熔化流动特性的成分控制区域。典型区域基本性能为:熔化温度(半球点温度)900~1100℃,1300℃的黏度0.1~0.2Pa·s,转折温度900~1150℃。  相似文献   

14.
针对包晶钢连铸生产时易出现表面纵裂这一问题,结合现场生产实际情况,通过对生产数据的统计,详细分析了钢水成分、结晶器水冷却强度、浸入式水口插入深度、保护渣、拉速等对连铸板坯表面纵裂纹产生的影响,并提出相应的解决办法,使板坯表面纵裂纹的发生控制在0.05%以下,提高板坯表面质量。  相似文献   

15.
The slag entrapment in mold tends to cause severe defects on the slab surface, especially for casting steels containing active alloy elements such as Al, Ti, and Mn. The wetting behavior of molten mold flux on the initial solidified shell is considered to be a key factor to determine the entrapment of mold slag on the shell surface. Therefore, the wetting behavior of mold flux droplet on the steel substrate with or without interfacial reaction was investigated by the sessile drop method. The results indicated that the melting process of mold flux has a significant influence on the variation of contact angle, and the final contact angle for Flux1 droplet on 20Mn23AlV is only 15 deg, which is lower than the other two cases due to the intensive interracial reactions occurring in this case. In addition, the thickness of the interaction layer for the case of Flux1 on 20Mn23AlV is 10-μm greater than the other two cases, which confirms that the most intensive reactions occurred at the interface area. The microstructure and element distribution at the interface analyzed by a scanning electron microscope (SEM) and energy dispersive spectrum (EDS) suggested that the increase of wettability of mold flux droplet on the steel substrate is caused by the migration of Al, Mn, and Si elements occurring in the vicinity of the interface. The results obtained in this article can reveal the mechanism of flux entrapment by hook or shell and provide theoretic guidance for mold flux design and optimization.  相似文献   

16.
Steel 20Mn23AlV is a type of high aluminum steel with a very low ladle free-opening rate. The aluminum composition of 20Mn23AlV ranges from 1. 6% to 2. 45%,which is significantly higher than other types of steel.According to the real condition of 40 t ladle in steel-making plant of Baosteel Special Steel Company,previous works show that the key factors affecting the ladle free-opening rate of high aluminum steel in continuous casting are: sand material,accessories baking,ladle nozzle cleaning,the process and amount of adding sand,and the rate of argon stirring during refining. Therefore,improving the ladle filler sand quality,baking all of the raw materials,controlling the addition of ladle filler sand,cleaning the ladle nozzle,and optimizing argon stirring during the refining process can resolve the problem of a low ladle free-opening rate of high aluminum steel caused by the long ladle time of liquid steel.  相似文献   

17.
杨晓江 《中国冶金》2016,26(12):36-39
针对唐钢薄板坯连铸连轧线生产高碳钢65Mn出现的带钢表面翘皮和铸坯内部偏析问题,分析了缺陷产生的原因机理。带钢表面翘皮为铸坯边部在矫直过程中形成角裂轧制而成,铸坯内部质量问题主要影响因素为连铸二冷强度、软压下终点位置和钢中硫质量分数。通过调整LF脱硫工艺、优化连铸保护渣、提高二冷水强度、调整软压下终点等措施,有效控制了高碳钢65Mn带钢表面翘皮缺陷和铸坯内部偏析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号