首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
为了探索复合铁酸钙的生成机制以优化烧结工艺,提高烧结矿质量,采用相平衡法研究了准化学平衡条件下Al_2O_3与MgO在烧结中的行为。结果表明,Al_2O_3和MgO的共同存在有利于复合铁酸钙(silico-ferrite of calcium and alminum,简称SFCA)的生成,但存在着交互作用,MgO促进赤铁矿分解生成磁铁矿,Al_2O_3的存在可抑制MgO的作用,减少磁铁矿生成,尤其在Al_2O_3质量分数较高时,MgO促进磁铁矿生成能力降低,促进SFCA生成作用增强。当MgO质量分数为2%时,添加质量分数2%的Al_2O_3矿相中磁铁矿质量分数快速降低,SFCA质量分数快速增加;随着Al_2O_3质量分数升高,SFCA晶面间距减小,晶体结构稳定性增强,有利于SFCA的生成;Al_2O_3质量分数超过3%后,孔洞结构增多,SFCA质量分数增加变缓,磁铁矿质量分数呈降低趋势,赤铁矿质量分数有升高趋势。  相似文献   

2.
运用本生灯法,对常温常压下(25℃、1.01×10~5Pa)的CH_4/H_2/O_2/CO_2预混气体的层流火焰传播速度进行实验研究,使用基于火焰图像为基础的全面积法计算预混气体层流火焰传播速度。主要研究了化学当量比(0.7~1.4)、氧气体积分数(30%、35%、40%)、氢气体积分数(0%~40%)对火焰传播速度的影响规律。结果表明:CH_4/H_2/O_2/CO_2混合气的火焰传播速度随着化学当量比的增加先增大后降低,化学当量比在1~1.1之间,火焰传播速度取得最大值;层流火焰传播速度随氧气体积分数的增大而增大,增长率也呈增长趋势;层流火焰传播速度随着氢气体积分数增大而增大。  相似文献   

3.
采用金相显微镜、扫描电子显微镜和能谱面扫描等仪器设备研究了钛稳定化SUS436L超纯铁素体不锈钢板材的夹杂物类型,结合热力学计算分析各类夹杂物的生成机理。结果表明,SUS436L不锈钢的夹杂物主要包括纯TiN颗粒、TiN包裹MgO·Al_2O_3尖晶石的复合夹杂以及Al_2O_3-CaO-TiO_2复合氧化物;当w([N])为0.007 0%、钢液温度为1 600~1 650℃时,平衡钛质量分数为0.23%~0.38%;当钢液温度为1 600℃、w([Al])为0.02%时,w([Mg])大于0.000 8%时生成MgO·Al_2O_3,w([Mg])大于0.004 4%则生成MgO;当钢液温度为1 600℃、w([Al])为0.02%时,钙处理后w([Ca])为0.000 14%~0.000 36%、大于0.000 36%时分别生成低熔点的12CaO·7Al_2O_3及3CaO·Al_2O_3,且在钛合金化后易生成低熔点的Al_2O_3-CaO-TiO_2复合氧化物。  相似文献   

4.
针对增加钒钛磁铁矿使用比例渣中TiO2质量分数提高后,对二元碱度以及MgO、TiO2和Al2O3质量分数等对高钛型高炉渣熔化性温度的影响进行了分析。结果表明,在二元碱度为0.9~1.3、MgO质量分数为7.00%~13.00%、TiO2质量分数为21.00%~25.00%、Al2O3质量分数为13.00%~16.00%、其他组? 槐涞奶跫拢孀哦疃取gO质量分数升高,熔化性温度升高;随着TiO2质量分数升高,熔化性温度先升高后降低;随着Al2O3质量分数升高,炉渣熔化性温度降低。二元碱度可以在较大范围内变化,对炉渣熔化性温度的调控作用最明显;MgO、TiO2和Al2O3的质量分数只能在较小的范围内变化,对炉渣熔化性影响不显著。在渣中TiO2质量分数为21.00%~25.00%的条件下,炉渣二元碱度不宜超过1.15,三元碱度不宜超过1.60,否则炉渣熔化性温度将显著升高。  相似文献   

5.
张宇航 《中国冶金》2017,27(5):62-68
为了降低炼钢全流程钢铁料消耗,结合西昌钢钒炼钢厂装备及工艺条件,在提钒工序提出低硅质量分数铁水采用石英砂调渣、优化供氧制度等工艺改进措施以降低钒渣TFe的质量分数;在脱硫工序提出优化脱硫剂w(CaO)/w(Mg)质量分数比以减少脱硫渣量及喷溅;在转炉炼钢工序提出优化转炉终点温度和终点碳质量分数以降低转炉渣TFe质量分数。通过工艺改进措施的实施,钒渣TFe质量分数由28.59%下降到26.72%,脱硫铁损的质量分数由2.94%下降到2.63%,转炉渣TFe的质量分数由20.09%下降到19.00%。炼钢全流程钢铁料消耗由2015年12月的1 112.73降低到2016年4月的1 107.55kg/t,达到国内同类型企业中的先进水平,取得了巨大的经济效益。  相似文献   

6.
采用雾化法制备了Ag-8 Sn-3.7 In(%,质量分数)合金粉末。分别研究了氧气压力、氧化温度及氧化时间对Ag-8 Sn-3.7 In合金粉末氧化行为的影响规律。系统地分析了Ag-8 Sn-3.7 In合金粉末氧化前后的物相组成、粉末粒度、表面形貌及表面成分。研究结果表明:Ag·SnO_2·In_2O_3合金粉末高压氧化条件中,温度起决定性的作用,选择合适的氧化温度是该氧化工艺的关键。当温度不够高时,需要长时间才能达到完全氧化。氧气压力可以加快氧化的进程,当氧气压力达到0.75 MPa以后,增大氧气压力,意义不大。对三种不同氧化工艺得到的Ag·SnO_2·In_2O_3合金粉末进行成分分析,在氧化完全的条件下,氧化温度越高,其表面偏析现象越低。在Ag-Sn-In合金粉末高压氧化过程中,氧向合金粉末内部扩散, Sn和In向粉末表面扩散,与O_2反应分别形成SnO_2和In_2O_3,聚集在颗粒表面的SnO_2相和In_2O_3相在表面反应,形成表面2In_2O_3·3SnO_2壳层,阻碍了Sn原子的进一步扩散。对于Ag-8 Sn-3.7 In(%,质量分数)合金粉末,较好的氧化参数为:氧化温度500℃,氧气压力0.75 MPa,氧化时间2 h。  相似文献   

7.
通过热力学计算分析了430铁素体不锈钢钙处理后在生成液态夹杂物区间内钢中钙质量分数和铝质量分数的关系,并对430铁素体不锈钢未采用钙处理和采用钙处理板坯中夹杂物类型、数量进行了对比,分析了钙处理夹杂物变性过程。结果表明,精炼过程喂入硅钙线可以得到理想的钙处理效果。钙处理后430钢水中高熔点的Al_2O_3和低变性的CaO-SiO_2-Al_2O_3-MgO夹杂物得到良好变性,夹杂物数量比未采用钙处理时明显减少,夹杂物尺寸都小于15μm。CaO和Al_2O_3两者通过发生化学反应变性为低熔点的液态夹杂物。  相似文献   

8.
 利用热分析法研究了富氧条件下高炉喷吹煤粉的燃烧特性。结果表明,富氧气氛可以改善煤粉燃烧特性,使煤粉着火点、失重峰提前,失重峰值增大,燃尽温度降低,综合燃烧特性指数明显提高,燃烧特性得到改善。当氧的体积分数小于40%时,煤粉燃烧特性改善幅度较大;氧的体积分数大于40%时,煤粉燃烧特性改善趋势变缓。同时采用非等温模型Flynn-Wall-Ozawa(FWO)对富氧之后煤粉燃烧过程进行动力学分析,当氧的体积分数由21%增加到100%,煤粉燃烧活化能从95. 15kJ·mol-1增加到169. 99kJ·mol-1。  相似文献   

9.
氧化烧损是金属热加工中影响经济技术指标的重要因素。轧钢加热炉在加热过程中钢的氧化烧损会造成一定的经济损失,同时氧化铁皮还会降低成品表面质量,延长钢在炉加热时间,增加停炉清渣次数等。通过分析、讨论影响板坯氧化烧损的因素,提出了降低板坯出炉目标温度、减少板坯在炉时间、合理控制炉内气氛等优化措施,板坯氧化烧损得到有效控制,创造了良好的经济效益和社会效益。  相似文献   

10.
为了解链箅机-回转窑氧化球团生产过程中回转窑内的结圈物的形成机理,首先采用X射线衍射、显微镜以及扫描电镜能谱对结圈物进行分析检测,发现其矿物组成主要为赤铁矿及硅酸盐相;然后进行含残碳煤灰和球团矿粉末的模拟焙烧试验,为进一步验证FeO对低熔点物质生成的作用,利用FactSage软件中的Phase Diagram模块,计算绘制液相投影图。结果表明,试样在高温过程中其FeO质量分数可达到10%~20%,而FeO可与煤灰中的SiO_2、CaO、Al_2O_3等生成含亚铁相的硅铝酸盐类低熔点化合物;当FeO质量分数从5%到30%依次升高时,SiO_2-CaO-Al_2O_3-FeO四元系相图中的液相区不断扩大,且液相线温度由1 200降低至1 100℃;FeO的存在对低熔点化合物的产生有较大的促进作用,证实喷煤补热燃烧过程中,含残碳煤灰与球团粉末混合后,可生成含亚铁相的硅铝酸盐类低熔点化合物,导致结圈物的形成。  相似文献   

11.
常金宝  杨文  张立峰  任英 《钢铁》2019,54(8):154-160
 对管线钢铸坯中的硫化物特征进行了分析,并对其形成机理进行了讨论。发现从中间包钢液到铸坯,管线钢中夹杂物由低熔点的CaO Al2O3向CaS Al2O3类型转变,且夹杂物尺寸越小,在冷却过程中的转变越充分。根据形貌特征,含硫化物夹杂可分为以下几类,即硫化物在氧化物表面部分析出、硫化物半包裹氧化物、硫化物完全包裹氧化物、纯硫化物和在TiN上析出的硫化物。采用FactSage软件对冷却过程管线钢中的夹杂物转变进行了计算,发现随着温度的降低,液态钙铝酸盐夹杂物逐渐经历CaO·Al2O3→CaO·2Al2O3→CaO·6Al2O3→Al2O3的转变过程,同时CaS和MnS相也在冷却过程中析出,且MnS的析出温度低于CaS,这解释了铸坯中硫化物的特征和形成。  相似文献   

12.
以涟钢7号高炉软熔带炉料滴落形成的初渣为研究对象进行化学成分分析,采用分析纯试剂制备高炉炉渣渣样,探究CaO SiO2 MgO Al2O3 FeO五元渣系中,w(FeO)为3%~8%、w(Al2O3)为9%~13%及w(MgO)为2%~6%对涟钢7号高炉初渣黏度和熔化性温度的影响规律。结果表明,在碱度为1.373时,炉渣黏度随FeO质量分数的增加而减小,且FeO质量分数越大,炉渣的熔化性温度越低;当w(MgO)为7.38%、w(FeO)为5%时,炉渣黏度和熔化性温度都随着Al2O3质量分数的增加而减小;当w(Al2O3)为10.95%、w(FeO)为5%时,随着MgO质量分数的增加,炉渣黏度和熔化性温度都呈现降低趋势。  相似文献   

13.
丁磊  贾景岩 《特殊钢》2021,42(2):52-55
气阀钢NCF3015 Φ280 mm×1700 mm电极(/%:0.03~0.08C,13.5~15.5Cr,30~33.5Ni,1.7~2.1Al,2.4~2.9Ti,0.65~0.80Mo,0.65~0.80Nb,0.002~0.006B)经全同轴式惰性气体保护电渣重熔成Φ340 mm0.80 t电渣锭。在使用三元预熔渣70CaF2-15Al2O3-15CaO以熔速为4 kg/min的全氩气保护条件下,试验了气阀钢NCF3015电渣过程中Al、Ti烧损的烧损量及Si的变化情况和脱S率,并阐述了机理。结果表明,Al相对Ti是主要的烧损元素,Al的平均烧损量为-0.071%,Ti的平均烧损量为-0.035%。从底部至顶部Al,Ti的烧损都逐渐减小,与常规电渣重熔烧损率相比,氩气保护对减小Al,Ti的烧损作用显著。Al、Ti的烧损导致重熔初期Si含量略增。该渣系有一定的脱硫效果,平均脱S率36.7%。  相似文献   

14.
在实验室条件下,研究高炉渣中MgO及Al2O3质量分数对高炉渣冶金性能的影响规律。试验结果表明,当高炉渣碱度为1.1、MgO质量分数为12%不变时,随着Al2O3质量分数的增加,高炉渣熔化性温度逐渐增加,且当Al2O3质量分数超过17.5%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐增加而渣铁硫分配比降低;当高炉渣碱度为1.1、Al2O3质量分数为20%不变时,随着MgO质量分数的增加,熔化性温度先降低后增加,当MgO质量分数超过11.8%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐降低而渣铁硫分配比增加。  相似文献   

15.
采用FactSage对不同Al2O3质量分数下CaO-SiO2-FeOx-MgO-Al2O3体系液相区进行热力学分析,并通过液相生成特性试验,研究高岭土型Al2O3和三水铝型Al2O3对CaO-SiO2-FeOx-MgO-Al2O3体系液相生成特性的影响。结果表明,高岭土型Al2O3和三水铝型Al2O3对液相生成特征温度的影响无明显差异,Al2O3质量分数增加,均使液相开始生成温度升高,液相生成温度区间缩小,高熔点黏结相比例增加。液相生成量与Al2O3类型质量分数相关,w(Al2O3)=1.0%时,含三水铝型Al2O3混合料液相生成量较少;w(Al2O3)=2.0%~3.5%时,含高岭土型Al2O3混合料液相生成量较少。  相似文献   

16.
陈为彬  高森  叶芸  刘承军 《中国冶金》2017,27(11):14-17
为了实现赤泥资源高附加值化综合利用,通过高温模拟试验对赤泥含碳球团还原焙烧-熔分过程进行研究。将赤泥含碳球团在1 200℃下进行还原焙烧,并结合相图分析,向粉碎后的焙烧球团中添加一定比例的CaO、Al_2O_3进行调质和熔分。结果表明,赤泥含碳球团在1 200℃下还原12min后金属化率可达91.3%,还原效果良好;在1 450℃下进行还原熔分,可实现渣铁的有效分离,金属铁收得率可达到90%以上,所得铁水质量符合炼钢要求;熔分渣中w(TFe)可降至0.5%以下,渣中主要物相为12CaO·7Al_2O_3、CaTiO_3和2CaO·Al_2O_3·SiO_2,通过熔点性能测试试验,熔化性能符合钢液脱硫条件。  相似文献   

17.
通过热力学计算与SEM-EDS检测对酒钢BOFLFRHCSP工艺Ti-IF钢夹杂物形核的热力学进行了研究。结果表明,在Ti-IF钢中夹杂物形核主要是非均匀形核,最易形成TiN,其次为CaO,然后为Al_2O_3。温度升高有利于Al_2O_3、CaO的形成;TiN的形成受温度影响较小。Ti-IF钢中w([Als])控制为0.027%~0.055%时,w([Mg])只需大于0.000 015%,就会有镁铝尖晶石MgO·Al_2O_3(MA)析出。Ti-IF钢中夹杂物演变主要有3种途径,分别为尖晶石与硅酸钙的复合夹杂Al_2O_3→MA→MgAlCaSi、低熔点的铝酸钙夹杂Al_2O_3→CaO·6Al_2O_3(CA_6)→CaO·2Al_2O_3(CA_2)→CaO·Al_2O_3(CA)→3CaO·Al_2O_3(C_3A)/12CaO·7Al_2O_3(C_(12)A_7)以及钛的复合物或钛的化合物Al_2O_3→TiOx→Al_2O_3·TiOx和Ti→TiN/Ti(C,N)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号