首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state and time-resolved fluorescence spectroscopy was used to follow the local and global changes in structure and dynamics during chemical and thermal denaturation of unlabeled human serum albumin (HSA) and HSA with an acrylodan moiety bound to Cys34. Acrylodan fluorescence was monitored to obtain information about unfolding processes in domain I, and the emission of the Trp residue at position 214 was used to examine domain II. In addition, Trp-to-acrylodan resonance energy transfer was examined to probe interdomain spatial relationships during unfolding. Increasing the temperature to less than 50 degrees C or adding less than 1.0 M GdHCl resulted in an initial, reversible separation of domains I and II. Denaturation by heating to 70 degrees C or by adding 2.0 M GdHCl resulted in irreversible unfolding of domain II. Further denaturation of HSA by either method resulted in irreversible unfolding of domain I. These results clearly demonstrate that HSA unfolds by a pathway involving at least three distinct steps. The low detection limits and high information content of dual probe fluorescence should allow this technique to be used to study the unfolding behavior of entrapped or immobilized HSA.  相似文献   

2.
The refolding kinetics of Escherichia coli trp aporepressor were monitored using stopped-flow far-ultraviolet circular dichroism and 8-anilino-1-naphthalene sulfonate fluorescence spectroscopy. Significant gains in secondary structure and the development of hydrophobic surface, respectively, were observed within the dead time of mixing (4-5 ms). These initial increases, or burst phase amplitudes, plotted as a function of final urea concentration, exhibited sigmoidal, coincident unfolding transition curves. The transition curves were fit to a two-state model, and the resulting free energies of folding in the absence of denaturant were found to be similar (approximately 3.3 kcal/mol). Three subsequent slow refolding phases exhibited relaxation times and amplitudes similar to those previously observed for tryptophan fluorescence [Gittelman, M. S., & Matthews, C. R. (1990) Biochemistry 29, 7011-7021]. These results support the proposals that a stable, monomeric intermediate is rapidly formed during the folding of trp aporepressor and that this species contains a significant amount of secondary structure and hydrophobic surface. This early intermediate is then processed through folding and association reactions that result in the formation of the remaining secondary, tertiary, and quaternary structure.  相似文献   

3.
Pseudomonas aeruginosa exotoxin A(ETA) and its C-terminal, enzymatically active fragment (PE40, 375 residues) were studied by high-performance size-exclusion chromatography, steady-state and stopped-flow fluorescence spectroscopy, and circular dichroism spectroscopy. Both proteins have been overexpressed and purified by high-performance liquid chromatography. The effect of various activation conditions (pH, urea, and DTT) on enzymatic activity was studied. Upon enzymatic activation, structural changes induced within both proteins' structures were monitored, and these changes were correlated with concomitant alterations in the catalytic activity of the proteins. The pH optimum of enzymatic activity for both ETA and PE40 was between 7.0 and 8.0, decreasing to nearly zero at acidic (pH 5.0) and basic (pH 11-12) values. Analysis of the pH titration data revealed the presence of two distinct pKa values which implicate a His residue(s) (likely His-440 and -426) and a Tyr or Lys residue (possibly Tyr-481). The identity and possible role of an active site Lys residue is not known. Additionally, a significant increase in the Stokes radii of both proteins was detected when the pH was lowered from 8.0 to 6.0. The enzymatic activity of PE40 was not affected by urea or DTT, and its Stokes radius decreased monotonically with increasing urea concentration in the presence of DTT. In contrast, the enzymatic activity of ETA peaked when the protein was preincubated with 4.0 M urea, and this coincided with a large transition (increase) in the protein's Stokes radius between 3 and 5 M urea. Furthermore, loss of helical secondary structure of both PE40 and ETA commenced at approximately 2 M urea and progressively diminished at higher denaturant concentrations. The unfolding of both proteins in urea (and DTT) was reversible, and the free energies of unfolding were determined by both circular dichroism and fluorescence spectroscopy and were found to be 13.7 +/- 2.9 and 9.8 +/- 3.4 kJ/mol, respectively, for ETA and were 17.8 +/- 6.8 and 7.5 +/- 3.6 kJ/mol, respectively, for PE40. The refolding rate of PE40 was relatively rapid [t 1/2(1) = 27 s, t 1/2(2) = 624 s], which was in stark contrast to the refolding rate of ETA (t 1/2 = several hours). The relative refolding rates of PE40 and ETA help to explain the mechanism of in vitro enzyme activation and assay.  相似文献   

4.
The presence of very low concentrations of the widely used denaturant urea induces structural changes in the monomeric heme-containing enzyme, horseradish peroxidase (HRP). Structural alterations in the protein were reflected in quenching studies of tryptophan fluorescence using the widely used quencher acrylamide. Stern-Volmer quenching constants measured in presence of urea, even in concentrations below 100 mm, were higher than those measured in absence of the denaturant. The fluorescence emission maximum of 1, 8-ANS, used as a probe for monitoring conformational changes in the enzyme, was blue-shifted from 530 nm in aqueous buffer to 518 nm when incorporated in native HRP. This blue shift increased further by 3 nm in presence of HRP preincubated with 100 mm urea, whereupon it steadily decreased with increasing urea concentration to become zero at 8 m urea. The mean fluorescence lifetime of 1,8-ANS incorporated in HRP was much higher than that of ANS in aqueous buffer, and showed continuous variation with the concentration of urea in which the enzyme was incubated. Systematic changes in the microenvironment of the heme moiety in HRP were also reflected in the visible CD spectra of the enzyme incubated with low concentrations of urea. These results are consistent with those of our earlier studies performed with the denaturant guanidinium chloride and indicate structural relaxation of HRP, with retention of enzymatic activity and native-like secondary structure, in presence of millimolar concentrations of urea.  相似文献   

5.
Tubulin unfolding in urea proceeds via the formation of a partially unfolded intermediate state, stable in 2 M urea, that unfolds further in higher urea concentrations. The intermediate state had spectroscopic properties reminiscent of a molten globule and negligible colchicine binding activity. Refolding of totally unfolded tubulin in 8 M urea yielded an intermediatelike state characterized by partial burial of tryptophans and partial recovery of secondary and tertiary structures, although colchicine-binding activity of the protein was not regained. Further folding of this intermediatelike state, toward the native conformation, with respect to both structural and functional parameters did not occur. However, a significant percentage of colchicine binding activity and nativelike tertiary structure was recovered when refolding was initiated from partially denatured protein samples, viz., from <1.2 M urea. Thus, although high concentration of urea induced loss of structure and activity was irreversible, the conformational changes induced in restricted regions of tubulin by lower concentrations of urea, which are probably crucial for its various functional properties, could be reversed.  相似文献   

6.
The iron-sulfur clusters of iron-sulfur proteins are not only essential for the structure and function but they also seem to play an important role in the folding process of these proteins. So far, no data on reversible unfolding/refolding of iron-sulfur proteins under aerobic conditions have been reported. We found appropriate conditions, which might also be applicable for other iron-sulfur proteins, for reversible unfolding/refolding of bovine adrenodoxin (Adx) that prevent cluster decomposition during the unfolding process. The unfolding/refolding studies have been performed under aerobic conditions using fluorescence measurements (with mutant Y82W of Adx, providing a sensitive internal probe), absorption, and circular dichroism (CD) spectroscopy as well as activity measurements. Without protecting reagent, adrenodoxin becomes an apoprotein upon denaturation which is an irreversible process with respect to cluster rebinding. However, reversibility of unfolding/refolding can be observed after protein denaturation in the presence of dithiothreitol (DTT). Upon removal of the denaturant, we regained 65, 63, and 64% refolding from CD, fluorescence, and activity measurements, respectively. In the case of thermal denaturation, the percentage of refolding is about 60% according to CD measurements. DTT appears to stabilize the [2Fe-2S] cluster and prevents its decomposition during aerobic unfolding, providing thereby the means of correct refolding of the protein.  相似文献   

7.
Equilibrium and kinetic studies of the guanidine hydrochloride induced unfolding-refolding of dimeric cytoplasmic creatine kinase have been monitored by intrinsic fluorescence, far ultraviolet circular dichroism, and 1-anilinonaphthalene-8-sulfonate binding. The GuHCl induced equilibrium-unfolding curve shows two transitions, indicating the presence of at least one stable equilibrium intermediate in GuHCl solutions of moderate concentrations. This intermediate is an inactive monomer with all of the thiol groups exposed. The thermodynamic parameters obtained by analysis using a three-state model indicate that this intermediate is similar in energy to the fully unfolded state. There is a burst phase in the refolding kinetics due to formation of an intermediate within the dead time of mixing (15 ms) in the stopped-flow apparatus. Further refolding to the native state after the burst phase follows biphasic kinetics. The properties of the burst phase and equilibrium intermediates were studied and compared. The results indicate that these intermediates are similar in some respects, but different in others. Both are characterized by pronounced secondary structure, compact globularity, exposed hydrophobic surface area, and the absence of rigid side-chain packing, resembling the "molten globule" state. However, the burst phase intermediate shows more secondary structure, more exposed hydrophobic surface area, and more flexible side-chain packing than the equilibrium intermediate. Following the burst phase, there is a fast phase corresponding to folding of the monomer to a compact conformation. This is followed by rapid assembly to form the dimer. Neither of the equilibrium unfolding transitions are protein concentration dependent. The refolding kinetics are also not concentration dependent. This suggests that association of the subunits is not rate limiting for refolding, and that under equilibrium conditions, dissociation occurs in the region between the two unfolding transitions. Based upon the above results, schemes of unfolding and refolding of creatine kinase are proposed.  相似文献   

8.
The binding of the multidomain protein factor VIIa (fVIIa) to tissue factor provides the interprotein communication necessary to make fVIIa an efficient catalyst of the initial event in the extrinsic pathway of blood coagulation. We have investigated the stability of individual domains in fVIIa and the influence of Ca2+ and an irreversible active-site inhibitor (FFR-chloromethyl ketone). Equilibrium guanidine hydrochloride (GuHCl)-induced unfolding monitored by tryptophan fluorescence and far-UV circular dichroism (CD) demonstrated that the gamma-carboxyglutamic acid (Gla) domain unfolds at 0.3 M GuHCl and the serine protease (SP) domain at 3 M GuHCl and that Ca2+ is a prerequisite for the formation of an ordered, compact structure in the Gla domain. The loss of amidolytic activity coincides with the first transition, which is stabilized by the active-site inhibitor, and a change in the environment of the active site is demonstrated using a fluorescent inhibitor (DEGR-chloromethyl ketone). Thermal unfolding monitored by differential scanning calorimetry (DSC) reveals that Ca2+ stabilizes the SP domain slightly, increasing the unfolding temperature by 2.7 degrees C. In addition, Ca2+ is required for a large enthalpy change concomitant with unfolding of the Gla domain, and this unfolding enthalpy is only detectable in the presence of the SP domain, indicating some kind of interaction between these domains. Thermal unfolding measured by CD indicates secondary structural changes at the same temperature as the heat absorption in the DSC but only when both the Gla domain and the SP domain are present together with Ca2+ ions. Taken together, these results indicate a Ca2+-dependent interaction between the Gla domain and the SP domain, implying a high degree of flexibility of the domains in free fVIIa. It is also shown that the epidermal growth factor-like domains are stable at elevated temperatures and high GuHCl concentrations. Moreover, already at physiological temperature, subtle structural changes take place which influence the overall shape of fVIIa and are detrimental to its enzymatic activity.  相似文献   

9.
The mechanism of unfolding of ferricytochrome c induced by the surfactant sodium dodecyl sulfate has been studied by heme absorption, tryptophan fluorescence, circular dichroism, resonance Raman scattering, stopped-flow and time-resolved resonance energy transfer to obtain a comprehensive view of the whole process. Unfolding occurred at an almost specific molecular ratio of SDS/cytochrome c in the concentration range (20-50 microM) studied here. However there appears to be a point at approximately 0.6 mM SDS where unfolding begins to occur for lower cytochrome c concentrations. The kinetics of unfolding revealed only a single transition with a rate constant of 33 s(-1) (at 298 K, [SDS] = 8.7 mM) and activation energy barrier of approximately 16 kJ/mol, indicating that other associated steps, if any, are too fast to be significantly populated. The free energy change (deltaG(o)) involved with the unfolding transition was estimated to be about 16.8 kJ/mol. The CD spectrum at 220 nm of SDS-unfolded cytochrome c shows only a partial decrease (25%), indicating that a significant amount of helical structure remains folded in contrast to a complete loss of helical structure in GdnHCl-denatured cytochrome c. The heme structure in SDS-unfolded cytochrome c, as deduced from heme absorption and resonance Raman spectra, shows a major population (approximately 95%) of mis-ligated histidine to the heme which acts as a kinetic trap in the folding process. The structural changes associated with cytochrome c unfolding were also monitored by time-resolved resonance energy transfer which shows a drastic increase in tryptophan fluorescence lifetime from 12 ps in the native protein to 0.63 ns in the unfolded one, associated with a movement of Trp59 by 10 A away from heme. The maximum entropy method analysis of fluorescence decay indicated the growth of various conformational substates in SDS-unfolded cytochrome c in contrast to narrowly distributed conformations in the native protein. The refolding was comprised of three kinetic steps; the first was significantly fast (approximately 8 ms) and was assigned to the dissociation of His26 that paves the protein towards correct folding pathway. The other two slower steps probably arise from chain misorganization and prolyl isomerization. The absence of a burst-phase amplitude supports the idea that the burst phase observed in the folding from completely unfolded cytochrome c corresponds to a molecular collapse that produces significant secondary structure. The partially unfolded state represents a unique intermediate state in the folding pathway.  相似文献   

10.
The unfolding kinetics of horse cytochrome c in the oxidized state has been studied at 10, 22, and 34 degreesC as a function of guanidine hydrochloride (GdnHCl) concentration. Rapid (millisecond) measurements of far-UV circular dichroism (CD) as well as fluorescence quenching due to tryptophan to heme excitation energy transfer have been used to monitor the unfolding process. At 10 degreesC, the decrease in far-UV CD signal that accompanies unfolding occurs in two phases. The unobservable burst phase is complete within 4 ms, while the slower phase occurs over tens to hundreds of milliseconds. The burst phase unfolding amplitude increases cooperatively with an increase in GdnHCl concentration, exhibiting a transition midpoint of 3.2 M at 10 degreesC. In contrast, no burst phase change in fluorescence occurs during unfolding at 10 degreesC. At 22 and 34 degreesC, both the fluorescence-monitored unfolding kinetics and the far-UV CD-monitored unfolding kinetics are biphasic. At both temperatures, the two probes yield burst phase unfolding transitions that are noncoincident with respect to the transition midpoints as well as the dependency of the burst phase amplitudes on GdnHCl concentration. The results suggest that at least two kinetic unfolding intermediates accumulate during unfolding. One burst phase intermediate, IU1, has lost virtually all the native-state secondary structure, while the other burst phase intermediate, IU2, has lost both secondary structure and native-like compactness. The presence of kinetic unfolding intermediates is also indicated by the nonlinear dependence of the logarithm of the apparent unfolding rate constant on GdnHCl concentration, which is particularly pronounced at 10 and 22 degreesC. Analysis of the burst phase unfolding transitions obtained using the two probes shows that the stabilities of IU1 and IU2 decrease steadily with an increase in temperature from 10 to 34 degreesC, suggesting that the structures present in them are stabilized principally by hydrogen bonding interactions.  相似文献   

11.
Stopped-flow fluorescence and circular dichroism spectroscopy have been used in conjunction with quenched-flow hydrogen exchange labelling, monitored by electrospray ionization mass spectrometry, to compare the refolding kinetics of hen egg-white lysozyme at 20 degrees C and 50 degrees C. At 50 degrees C there is clear evidence for distinct fast and slow refolding populations, as observed at 20 degrees C, although folding occurs significantly more rapidly. The folding process is, however, substantially more cooperative at the higher temperature. In particular, the transient intermediate on the major refolding pathway at 20 degrees C, having persistent native-like structure in the alpha-helical domain of the protein, is not detected by hydrogen exchange labelling at 50 degrees C. In addition, the characteristic maximum in negative ellipticity and the minimum in fluorescence intensity observed in far UV CD and intrinsic fluorescence experiments at 20 degrees C, respectively, are not seen at 50 degrees C. Addition of 2 M NaCl to the refolding buffer at 50 degrees C, however, regenerates both the hydrogen exchange and optical properties associated with the alpha-domain intermediate but has no significant effect on the overall refolding kinetics. Together with previous findings, these results indicate that non-native interactions within the alpha-domain intermediate are directly responsible for the unusual optical properties observed during refolding, and that this intermediate accumulates as a consequence of its intrinsic stability in a folding process where the formation of stable structure in the beta-domain constitutes the rate-limiting step for the majority of molecules.  相似文献   

12.
Thermal unfolding of dodecameric manganese glutamine synthetase (622,000 M(r)) at pH 7 and approximately 0.02 ionic strength occurs in two observable steps: a small reversible transition (Tm approximately 42 degrees C; delta H approximately equal to 0.9 J/g) followed by a large irreversible transition (Tm approximately 81 degrees C; delta H approximately equal to 23.4 J/g) in which secondary structure is lost and soluble aggregates form. Secondary structure, hydrophobicity, and oligomeric structure of the equilibrium intermediate are the same as for the native protein, whereas some aromatic residues are more exposed. Urea (3 M) destabilizes the dodecamer (with a tertiary structure similar to that without urea at 55 degrees C) and inhibits aggregation accompanying unfolding at < or = 0.2 mg protein/mL. With increasing temperature (30-70 degrees C) or incubation times at 25 degrees C (5-35 h) in 3 M urea, only dodecamer and unfolded monomer are detected. In addition, the loss in enzyme secondary structure is pseudo-first-order (t1/2 = 1,030 s at 20.0 degrees C in 4.5 M urea). Differential scanning calorimetry of the enzyme in 3 M urea shows one endotherm (Tmax approximately 64 degrees C; delta H = 17 +/- 2 J/g). The enthalpy change for dissociation and unfolding agrees with that determined by urea titrations by isothermal calorimetry (delta H = 57 +/- 15 J/g; Zolkiewski M, Nosworthy NJ, Ginsburg A, 1995, Protein Sci 4: 1544-1552), after correcting for the binding of urea to protein sites exposed during unfolding (-42 J/g). Refolding and assembly to active enzyme occurs upon dilution of urea after thermal unfolding.  相似文献   

13.
The folding of a 98 residue protein, muscle acylphosphatase (AcP), has been studied using a variety of techniques including circular dichroism, fluorescence and NMR spectroscopy following transfer of chemically denatured protein into refolding conditions. A low-amplitude phase, detected in concurrence with the main kinetic phase, corresponds to the folding of a minor population (13%) of molecules with one or both proline residues in a cis conformation, as shown from the sensitivity of its rate to peptidyl prolyl isomerase. The major phase of folding has the same kinetic characteristics regardless of the technique employed to monitor it. The plots of the natural logarithms of folding and unfolding rate constants versus urea concentration are linear over a broad range of urea concentrations. Moreover, the initial state formed rapidly after the initiation of refolding is highly unstructured, having a similar circular dichroism, intrinsic fluorescence and NMR spectrum as the protein denatured at high concentrations of urea. All these results indicate that AcP folds in a two-state manner without the accumulation of intermediates. Despite this, the folding of the protein is extremely slow. The rate constant of the major phase of folding in water, kfH2O, is 0.23 s-1 at 28 degreesC and, at urea concentrations above 1 M, the folding process is slower than the cis-trans proline isomerisation step. The slow refolding of this protein is therefore not the consequence of populated intermediates that can act as kinetic traps, but arises from a large intrinsic barrier in the folding reaction.  相似文献   

14.
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74') and (13'-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol-disulfide exchange.  相似文献   

15.
Expression of cytochrome c from Thermus thermophilus in Escherichia coli (E. coli) leads to a protein with characteristics of a molten globule. Unfolding induced by guanidine hydrochloride (GdHCl) shows that E. coli-expressed cytochrome c has lower stability (and less cooperativity of unfolding) compared to the protein extracted from Thermus thermophilus, even though the two proteins have identical amino-acid sequences. Moreover, Soret and far-UV circular dichroism signals differ for the two proteins, suggesting a distorted heme environment and more side-chain dynamics of E. coli-expressed cytochrome c. Still, tryptophan fluorescence in E. coli-expressed cytochrome c is quenched as in native protein, and the iron coordinates in a low-spin form. Amino-acid sequencing indicates the presence of only one covalent cysteine-linkage to the heme in E. coli-expressed cytochrome c (normally, there are two linkages), a possible explanation for the trapped, molten-globule-like structure. The features of this non-native protein may be of interest for interpretation of cytochrome c folding kinetics in vitro, since a molten globule may be an intermediate on the folding pathway.  相似文献   

16.
cAMP receptor protein (CRP) regulates expression of a number of genes in Escherichia coli. The protein is a homodimer and each monomer is folded into two structural domains. The biological activation of CRP upon cAMP binding may involve the subunit realignment as well as reorientation between the domains within each subunit. In order to study the interactions between the subunits or domains, we performed stopped-flow measurements of the guanidine hydrochloride (GuHCI)-induced denaturation of CRP. The changes in CRP structure induced by GuHCl were monitored using both intrinsic Trp fluorescence as well as the fluorescence of an extrinsic probe, 8-anilino-1-Naphthalenesulfonic acid (ANS). Results of CRP denaturation using Trp fluorescence detection are consistent with a two-step model [Malecki, and Wasylewski, (1997), Eur. J. Biochem. 243, 660], where the dissociation of dimer into subunits is followed by the monomer unfolding. The denaturation of CRP monitored by ANS fluorescence reveals the existence of two additional processes. One occurs before the dissociation of CRP into subunits, whereas the second takes place after the dissociation, but prior to proper subunit unfolding. These additional processes suggest that CRP denaturation is described by a more complicated mechanism than a simple three-state equilibrium and may involve additional changes in both inter- and intrasubunit interactions. We also report the effect of cAMP on the kinetics of CRP subunit unfolding and refolding.  相似文献   

17.
A molten globule-like state of hen egg-white lysozyme has been characterized in 25% aqueous hexafluoroacetone hydrate (HFA) by CD, fluorescence, NMR, and H/D exchange experiments. The far UV CD spectra of lysozyme in 25% HFA supports retention of native-like secondary structure while the loss of near UV CD bands are indicative of the overall collapse of the tertiary structure. The intermediate state in 25% HFA exhibits an enhanced affinity towards the hydrophobic dye, ANS, and a native-like tryptophan fluorescence quenching. 1-D NMR spectra indicates loss of native-like tertiary fold as evident from the absence of ring current-shifted 1H resonances. CD, fluorescence, and NMR suggest that the transition from the native state to a molten globule state in 25% HFA is a cooperative process. A second structural transition from this compact molten globule-like state to an "open" helical state is observed at higher concentrations of HFA (> or = 50%). This transition is characterized by a dramatic loss of ANS binding with a concomitant increase in far UV CD bands. The thermal unfolding of the molten globule state in 25% HFA is sharply cooperative, indicating a predominant role of side-chain-side-chain interactions in the stability of the partially folded state. H/D exchange experiments yield higher protection factors for many of the backbone amide protons from the four alpha-helices along with the C-terminal 3(10) helix, whereas little or no protection is observed for most of the amide protons from the triple-stranded antiparallel beta-sheet domain. This equilibrium molten globule-like state of lysozyme in 25% HFA is remarkably similar to the molten globule state observed for alpha-lactalbumin and also with the molten globule state transiently observed in the kinetic refolding experiments of hen lysozyme. These results suggest that HFA may prove generally useful as a structure modifier in proteins.  相似文献   

18.
Cardiotoxin analogue III (CTX III) isolated from the venom of the Taiwan Cobra (Naja naja atra) is a small molecular weight, all beta-sheet protein, cross-linked by four disulfide bridges. The unfolding and refolding mechanisms of CTX III have been examined by monitoring the reversible conversion of the native and scrambled species. It is found that, in the presence of a denaturant (urea/guanidinium hydrochloride) and a thiol catalyst, CTX III forms a mixture of scrambled species by shuffling its four native disulfide bonds. Complete unfolding of CTX III can be achieved using either 3.0-4.0 M guanidinium hydrochloride (GdmCl) or 5.0-6.0 M urea. It is observed that GdmCl is thermodynamically more potent but kinetically less efficient than urea in unfolding CTX III. The rate constants of unfolding of CTX III in 8 M urea are significantly greater than that obtained in 5.0 M GdmCl and 8.0 M GdmCl. Interestingly, upon removal of the denaturant, scrambled species of CTX III is found to refold spontaneously through dynamic reshuffling of the non-native disulfides to attain the native disulfide linkages. In addition, CTX III contains highly reactive lysines which are modified by trace amounts of cyanate contaminant which exists invariably even in high-grade urea solutions. The reactive lysines of CTX III are modified by cyanate both in the native and unfolded states of the protein. The modification is nonselective, and the modified product is found to consist of highly heterogeneous species. Surprisingly, these heterogeneous species of modified CTX III are observed to display stability and folding/unfolding properties indistinguishable from those of the native CTX III. The knowledge obtained from the present study, on the conditions to convert the scrambled species, could provide useful clues for a rational design for snake venom cardiotoxins with potential therapeutic applications.  相似文献   

19.
We have used thermodynamic and kinetic techniques to monitor the guanidinium chloride induced (GdmCl-induced) denaturation of N-(5'-phosphoribosyl)anthranilate isomerase from Escherichia coli (ePRAI). Although CD-monitored equilibrium denaturation curves are consistent with cooperative unfolding of the protein centered at 1.45 M GdmCl, fluorescence readings drop by over 25% in the region preceding the CD-monitored transition, suggesting non-two-state behavior. Kinetics experiments measure a slow relaxation rate with negative fluorescence amplitude when protein is diluted from 0 to 0.5 M GdmCl, corroborating results from equilibrium conditions. Detection of several unfolding and refolding rates in final GdmCl concentrations from 0 to 5.0 M indicates the presence of at least one intermediate along unfolding and refolding pathways. GdmCl dependence of the relaxation rates can be explained most easily by a nonsequential mechanism for ePRAI unfolding, though a sequential mechanism cannot be ruled out. The data corroborate the fragment complementation studies of Eder and Kirschner [Eder, J., & Kischner, K. (1992) Biochemistry 31, 3617-3625], which are consistent with unfolding of the C-terminal portion of a yeast-derived PRAI in its folding intermediate. In ePRAI, such partial unfolding would expose W391 to quenching by solvent molecules; W356, ePRAI's other tryptophan, is buried in the hydrophobic core and is unlikely to be affected by local changes in structure. A C-terminally unfolded folding intermediate has been demonstrated in the folding of tryptophan synthase (alpha-subunit), a related beta alpha-barrel enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
As reported previously (MacDonald, R. I., Musacchio, A., Holmgren, R. A., and Saraste, M. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 1299-1303), an unfolded peptide was obtained by site-directed mutagenesis of Trp-22 to Ala in the cloned, wild type 17th repeating unit (alpha17) of chicken brain alpha-spectrin. Trp occurs in position 22 of nearly all repeating units of spectrin. In the present study, Trp-22 was mutated to Phe or to Tyr to compare thermodynamic stabilities of urea-induced unfolding of alpha16 and mutants thereof. alpha16 was chosen for this study instead of alpha17, because alpha16 has two tryptophans, allowing urea-induced unfolding to be tracked by the fluorescence of the Trp remaining in each mutant peptide and by circular dichroism in the far UV. The free energies of unfolding of W22Y and W22F were 50% that of alpha16, showing that Trp-22 is crucial in stabilizing the triple helical bundle motif of the spectrin repeating unit. Mutation of the moderately conserved Trp-95 of alpha16 to Val, which occupies position 95 in alpha17, also yielded a peptide with 50% of the free energy of unfolding of alpha16. Thus, the thermodynamic stability of a given spectrin repeating unit may depend on both moderately and highly conserved tryptophans. Different structural roles of Trp-22 and Trp-95 in alpha16 are suggested by the slightly higher wavelength of maximum emission of Trp-22, the greater acrylamide quenching of Trp-95 than Trp-22, and the longer lifetime of Trp-95. For comparison with alpha16, urea-induced unfolding of spectrin dimer isolated from human red cells was monitored by far UV-CD and by tryptophan fluorescence. Thermodynamic parameters could not be rigorously derived for the stability of spectrin dimer because unfolding of spectrin dimer involved more than two states, unlike unfolding of cloned repeating units. However, the similar midpoints of CD-monitored denaturation curves of alpha16 and spectrin dimer, i. e. 2.7 and 3.2 M urea, respectively, indicate that investigation of cloned repeating units of spectrin can provide physiologically relevant information on these structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号