首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tumor and Edema region present in Magnetic Resonance (MR) brain image can be segmented using Optimization and Clustering merged with seed‐based region growing algorithm. The proposed algorithm shows effectiveness in tumor detection in T1 ‐ w, T2 – w, Fluid Attenuated Inversion Recovery and Multiplanar Reconstruction type MR brain images. After an initial level segmentation exhibited by Modified Particle Swarm Optimization (MPSO) and Fuzzy C – Means (FCM) algorithm, the seed points are initialized using the region growing algorithm and based on these seed points; tumor detection in MR brain images is done. The parameters taken for comparison with the conventional techniques are Mean Square Error, Peak Signal to Noise Ratio, Jaccard (Tanimoto) index, Dice Overlap indices and Computational Time. These parameters prove the efficacy of the proposed algorithm. Heterogeneous type tumor regions present in the input MR brain images are segmented using the proposed algorithm. Furthermore, the algorithm shows augmentation in the process of brain tumor identification. Availability of gold standard images has led to the comparison of the suggested algorithm with MPSO‐based FCM and conventional Region Growing algorithm. Also, the algorithm recommended through this research is capable of producing Similarity Index value of 0.96, Overlap Fraction value of 0.97 and Extra Fraction value of 0.05, which are far better than the values articulated by MPSO‐based FCM and Region Growing algorithm. The proposed algorithm favors the segmentation of contrast enhanced images. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 33–45, 2017  相似文献   

2.
Fully automatic brain tumor segmentation is one of the critical tasks in magnetic resonance imaging (MRI) images. This proposed work is aimed to develop an automatic method for brain tumor segmentation process by wavelet transformation and clustering technique. The proposed method using discrete wavelet transform (DWT) for pre‐ and post‐processing, fuzzy c‐means (FCM) for brain tissues segmentation. Initially, MRI images are preprocessed by DWT to sharpen the images and enhance the tumor region. It assists to quicken the FCM clustering technique and classified into four major classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background (BG). Then check the abnormality detection using Fuzzy symmetric measure for GM, WM, and CSF classes. Finally, DWT method is applied in segmented abnormal region of images respectively and extracts the tumor portion. The proposed method used 30 multimodal MRI training datasets from BraTS2012 database. Several quantitative measures were calculated and compared with the existing. The proposed method yielded the mean value of similarity index as 0.73 for complete tumor, 0.53 for core tumor, and 0.35 for enhancing tumor. The proposed method gives better results than the existing challenging methods over the publicly available training dataset from MICCAI multimodal brain tumor segmentation challenge and a minimum processing time for tumor segmentation. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 305–314, 2016  相似文献   

3.
The present article proposes a novel computer‐aided diagnosis (CAD) technique for the classification of the magnetic resonance brain images. The current method adopt color converted hybrid clustering segmentation algorithm with hybrid feature selection approach based on IGSFFS (Information gain and Sequential Forward Floating Search) and Multi‐Class Support Vector Machine (MC‐SVM) classifier technique to segregate the magnetic resonance brain images into three categories namely normal, benign and malignant. The proposed hybrid evolutionary segmentation algorithm which is the combination of WFF(weighted firefly) and K‐means algorithm called WFF‐K‐means and modified cuckoo search (MCS) and K‐means algorithm called MCS‐K‐means, which can find better cluster partition in brain tumor datasets and also overcome local optima problems in K‐means clustering algorithm. The experimental results show that the performance of the proposed algorithm is better than other algorithms such as PSO‐K‐means, color converted K‐means, FCM and other traditional approaches. The multiple feature set comprises color, texture and shape features derived from the segmented image. These features are then fed into a MC‐SVM classifier with hybrid feature selection algorithm, trained with data labeled by experts, enabling the detection of brain images at high accuracy levels. The performance of the method is evaluated using classification accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) curves. The proposed method provides highest classification accuracy of greater than 98% with high sensitivity and specificity rates of greater than 95% for the proposed diagnostic model and this shows the promise of the approach. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 226–244, 2015  相似文献   

4.
The partitioning of an image into several constituent components is called image segmentation. Many approaches have been developed; one of them is the particle swarm optimization (PSO) algorithm, which is widely used. PSO algorithm is one of the most recent stochastic optimization strategies. In this article, a new efficient technique for the magnetic resonance imaging (MRI) brain images segmentation thematic based on PSO is proposed. The proposed algorithm presents an improved variant of PSO, which is particularly designed for optimal segmentation and it is called modified particle swarm optimization. The fitness function is used to evaluate all the particle swarm in order to arrange them in a descending order. The algorithm is evaluated by performance measures such as run time execution and the quality of the image after segmentation. The performance of the segmentation process is demonstrated by using a defined set of benchmark images and compared against conventional PSO, genetic algorithm, and PSO with Mahalanobis distance based segmentation methods. Then we applied our method on MRI brain image to determinate normal and pathological tissues. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 265–271, 2013  相似文献   

5.
In this article, a fully unsupervised method for brain tissue segmentation of T1‐weighted MRI 3D volumes is proposed. The method uses the Fuzzy C‐Means (FCM) clustering algorithm and a Fully Connected Cascade Neural Network (FCCNN) classifier. Traditional manual segmentation methods require neuro‐radiological expertise and significant time while semiautomatic methods depend on parameter's setup and trial‐and‐error methodologies that may lead to high intraoperator/interoperator variability. The proposed method selects the most useful MRI data according to FCM fuzziness values and trains the FCCNN to learn to classify brain’ tissues into White Matter, Gray Matter, and Cerebro‐Spinal Fluid in an unsupervised way. The method has been tested on the IBSR dataset, on the BrainWeb Phantom, on the BrainWeb SBD dataset, and on the real dataset “University of Palermo Policlinico Hospital” (UPPH), Italy. Sensitivity, Specificity, Dice and F‐Factor scores have been calculated on the IBSR and BrainWeb datasets segmented using the proposed method, the FCM algorithm, and two state‐of‐the‐art brain segmentation software packages (FSL and SPM) to prove the effectiveness of the proposed approach. A qualitative evaluation involving a group of five expert radiologists has been performed segmenting the real dataset using the proposed approach and the comparison algorithms. Finally, a usability analysis on the proposed method and reference methods has been carried out from the same group of expert radiologists. The achieved results show that the segmentations of the proposed method are comparable or better than the reference methods with a better usability and degree of acceptance.  相似文献   

6.
In brain magnetic resonance (MR) images, image segmentation and 3D visualization are very useful tools for the diagnosis of abnormalities. Segmentation of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is the basic process for 3D visualization of brain MR images. Of the many algorithms, the fuzzy c‐means (FCM) technique has been widely used for segmentation of brain MR images. However, the FCM technique does not yield sufficient results under radio frequency (RF) nonuniformity. We propose a hierarchical FCM (HFCM), which provides good segmentation results under RF nonuniformity and does not require any parameter setting. We also generate Talairach templates of the brain that are deformed to 3D brain MR images. Using the deformed templates, only the cerebrum region is extracted from the 3D brain MR images. Then, the proposed HFCM partitions the cerebrum region into WM, GM, and CSF. © 2003 Wiley Periodicals, Inc. Int J Imaging Syst Technol 13, 115–125, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.10035  相似文献   

7.
This proposed work is aimed to develop a rapid automatic method to detect the brain tumor from T2‐weighted MRI brain images using the principle of modified minimum error thresholding (MET) method. Initially, modified MET method is applied to produce well segmented and sub‐structural clarity for MRI brain images. Further, using FCM clustering the appearance of tumor area is refined. The obtained results are compared with corresponding ground truth images. The quantitative measures of results were compared with the results of those conventional methods using the metrics predictive accuracy (PA), dice coefficient (DC), and processing time. The PA and DC values of the proposed method attained maximum value and processing time is minimum while compared to conventional FCM and k‐means clustering techniques. This proposed method is more efficient and faster than the existing segmentation methods in detecting the tumor region from T2‐weighted MRI brain images. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 77–85, 2015  相似文献   

8.
针对模糊C-均值聚类算法(FCM)容易陷入局部极值和对初始值敏感的不足,提出了一种新的模糊聚类算法(PFCM),新算法利用粒子群优化算法(PSO)全局寻优、快速收敛的特点,代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极值的缺陷,同时也降低了FCM算法对初始值的敏感度。将该算法应用于汽轮机组振动故障诊断中,与电厂运行实际故障状态对照,仿真结果表明该算法提高了故障诊断的正确率。为汽轮机振动故障诊断方法的研究提供了一种新的思路。  相似文献   

9.
The synthetic aperture radar (SAR) images are mainly affected by speckle noise. Speckle degrades the features in the image and reduces the ability of a human observer to resolve fine detail, hence despeckling is very much required for SAR images. This paper presents speckle noise reduction in SAR images using a combination of curvelet and fuzzy logic technique to restore speckle-affected images. This method overcomes the limitation of discontinuity in hard threshold and permanent deviation in soft threshold. First, it decomposes noise image into different frequency scales using curvelet transform, and then applies the fuzzy shrinking technique to high-frequency coefficients to restore noise-contaminated coefficients. The proposed method does not use threshold approach only by proper selection of shrinking parameter the speckle in SAR image is suppressed. The experiment is carried out on different resolutions of RISAT-1 SAR images, and results are compared with the existing filtering algorithms in terms of noise mean variance (NMV), mean square difference (MSD), equal number of looks (ENL), noise standard deviation (NSD) and speckle suppression index (SSI). A comparison of the results shows that the proposed technique suppresses noise significantly, preserves the details of the image and improves the visual quality of the image.  相似文献   

10.
Automated and accurate classification of MR brain images is of crucially importance for medical analysis and interpretation. We proposed a novel automatic classification system based on particle swarm optimization (PSO) and artificial bee colony (ABC), with the aim of distinguishing abnormal brains from normal brains in MRI scanning. The proposed method used stationary wavelet transform (SWT) to extract features from MR brain images. SWT is translation‐invariant and performed well even the image suffered from slight translation. Next, principal component analysis (PCA) was harnessed to reduce the SWT coefficients. Based on three different hybridization methods of PSO and ABC, we proposed three new variants of feed‐forward neural network (FNN), consisting of IABAP‐FNN, ABC‐SPSO‐FNN, and HPA‐FNN. The 10 runs of K‐fold cross validation result showed the proposed HPA‐FNN was superior to not only other two proposed classifiers but also existing state‐of‐the‐art methods in terms of classification accuracy. In addition, the method achieved perfect classification on Dataset‐66 and Dataset‐160. For Dataset‐255, the 10 repetition achieved average sensitivity of 99.37%, average specificity of 100.00%, average precision of 100.00%, and average accuracy of 99.45%. The offline learning cost 219.077 s for Dataset‐255, and merely 0.016 s for online prediction. Thus, the proposed SWT + PCA + HPA‐FNN method excelled existing methods. It can be applied to practical use.  相似文献   

11.
Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain tumor.  相似文献   

12.
Reliability analysis is an important and practical way of considering uncertainty in an engineering system. In practical engineering, the limit state functions are usually implicit in terms of random variables. Traditional reliability analysis methods are time‐consuming and require derivative computing. In this paper, particle swarm optimization (PSO) is applied to reliability analysis by combining it with the first‐order reliability method. To improve the global search performance, chaotic PSO (CPSO) was proposed by combining PSO with a chaotic system. CPSO‐based reliability analysis is described and applied to four classic examples. The results show that implementation of CPSO‐based reliability analysis is easy and can yield a reliability index and design point with good accuracy. The proposed method was applied to analyze the reliability of a circular tunnel in different cases. The results show that the CPSO algorithm is very efficient at solving global optimization problems and is a good approach for reliability analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The identification of brain tumors is multifarious work for the separation of the similar intensity pixels from their surrounding neighbours. The detection of tumors is performed with the help of automatic computing technique as presented in the proposed work. The non-active cells in brain region are known to be benign and they will never cause the death of the patient. These non-active cells follow a uniform pattern in brain and have lower density than the surrounding pixels. The Magnetic Resonance (MR) image contrast is improved by the cost map construction technique. The deep learning algorithm for differentiating the normal brain MRI images from glioma cases is implemented in the proposed method. This technique permits to extract the linear features from the brain MR image and glioma tumors are detected based on these extracted features. Using k-mean clustering algorithm the tumor regions in glioma are classified. The proposed algorithm provides high sensitivity, specificity and tumor segmentation accuracy.  相似文献   

14.
Image denoising is an integral component of many practical medical systems. Non‐local means (NLM) is an effective method for image denoising which exploits the inherent structural redundancy present in images. Improved adaptive non‐local means (IANLM) is an improved variant of classical NLM based on a robust threshold criterion. In this paper, we have proposed an enhanced non‐local means (ENLM) algorithm, for application to brain MRI, by introducing several extensions to the IANLM algorithm. First, a Rician bias correction method is applied for adapting the IANLM algorithm to Rician noise in MR images. Second, a selective median filtering procedure based on fuzzy c‐means algorithm is proposed as a postprocessing step, in order to further improve the quality of IANLM‐filtered image. Third, different parameters of the proposed ENLM algorithm are optimized for application to brain MR images. Different variants of the proposed algorithm have been presented in order to investigate the influence of the proposed modifications. The proposed variants have been validated on both T1‐weighted (T1‐w) and T2‐weighted (T2‐w) simulated and real brain MRI. Compared with other denoising methods, superior quantitative and qualitative denoising results have been obtained for the proposed algorithm. Additionally, the proposed algorithm has been applied to T2‐weighted brain MRI with multiple sclerosis lesion to show its superior capability of preserving pathologically significant information. Finally, impact of the proposed algorithm has been tested on segmentation of brain MRI. Quantitative and qualitative segmentation results verify that the proposed algorithm based segmentation is better compared with segmentation produced by other contemporary techniques.  相似文献   

15.
This article aims at developing an automated hybrid algorithm using Cuckoo Based Search (CBS) and interval type‐2 fuzzy based clustering, so as to exhibit efficient magnetic resonance (MR) brain image segmentation. An automatic MR brain image segmentation facilitates and enables a radiologist to have a brief review and easy analysis of complicated tumor regions of imprecise gray level regions with minimal user interface. The tumor region having severe intensity variations and suffering from poor boundaries are to be detected by the proposed hybrid technique that could ease the process of clinical diagnosis and this tends to be the core subject of this article. The ability of the proposed technique is compared using standard comparison parameters such as mean squared error, peak signal to noise ratio, computational time, Dice Overlap Index, and Jaccard T animoto C oefficient Index. The proposed CBS combined with interval type‐2 fuzzy based clustering produces a sensitivity of 0.7143 and specificity of 0.9375, which are far better than the conventional techniques such as kernel based, entropy based, graph‐cut based, and self‐organizing maps based clustering. Appreciable segmentation results of tumor region that enhances clinical diagnosis is made available through this article and two of the radiologists who have hands on experience in the field of radiology have extended their support in validating the efficiency of the proposed methodology and have given their consent in utilizing the proposed methodology in the processes of clinical oncology.  相似文献   

16.
Magnetic resonance imaging (MRI) brain image segmentation is essential at preliminary stage in the neuroscience research and computer‐aided diagnosis. However, presence of noise and intensity inhomogeneity in MRI brain images leads to improper segmentation. The fuzzy entropy clustering (FEC) is often used to deal with noisy data. One major disadvantage of the FEC algorithm is that it does not consider the local spatial information. In this article, we have proposed an improved fuzzy entropy clustering (IFEC) algorithm by introducing a new fuzzy factor, which incorporates both local spatial and gray‐level information. The IFEC algorithm is insensitive to noise, preserves the image detail during clustering, and is free of parameter selection. The efficacy of IFEC algorithm is demonstrated by comparing it quantitatively with the state‐of‐the‐art segmentation approaches in terms of similarity index on publically available real and simulated MRI brain images.  相似文献   

17.
Liver Segmentation is one of the challenging tasks in detecting and classifying liver tumors from Computed Tomography (CT) images. The segmentation of hepatic organ is more intricate task, owing to the fact that it possesses a sizeable quantum of vascularization. This paper proposes an algorithm for automatic seed point selection using energy feature for use in level set algorithm for segmentation of liver region in CT scans. The effectiveness of the method can be determined when used in a model to classify the liver CT images as tumorous or not. This involves segmentation of the region of interest (ROI) from the segmented liver, extraction of the shape and texture features from the segmented ROI and classification of the ROIs as tumorous or not by using a classifier based on the extracted features. In this work, the proposed seed point selection technique has been used in level set algorithm for segmentation of liver region in CT scans and the ROIs have been extracted using Fuzzy C Means clustering (FCM) which is one of the algorithms to segment the images. The dataset used in this method has been collected from various repositories and scan centers. The outcome of this proposed segmentation model has reduced the area overlap error that could offer the intended accuracy and consistency. It gives better results when compared with other existing algorithms. Fast execution in short span of time is another advantage of this method which in turns helps the radiologist to ascertain the abnormalities instantly.  相似文献   

18.
In this article, the segmented brain tumor region is diagnosed into mild, moderate, and severe case based on the presence of tumor cells in the brain components such as Gray Matter (GM), White Matter (WM), and cerebrospinal fluid (CSF). The modified spatial fuzzy c mean algorithm is used to segment brain tissues. The feature Local binary pattern is extracted from segmented tissues, which is trained and classified by ANFIS Classifier. The performance of the proposed brain tissues segmentation system is analyzed in terms of sensitivity, specificity, and accuracy with respect to manually segmented ground truth images. The severity of brain tumor is diagnosed into mild case if the segmented brain tumor is present in the grey matter. The severity of brain tumor is diagnosed into moderate case if the segmented brain tumor is present in the WM. The severity of brain tumor is diagnosed into severe case if the segmented brain tumor is present in the CSF region. The immediate surgery is required for severe case and medical treatment is preferred for mild and moderate case.  相似文献   

19.
Segmentation of tumors in human brain aims to classify different abnormal tissues (necrotic core, edema, active cells) from normal tissues (cerebrospinal fluid, gray matter, white matter) of the brain. In existence, detection of abnormal tissues is easy for studying brain tumor, but reproducibility, characterization of abnormalities and accuracy are complicated in the process of segmentation. The magnetic resonance imaging (MRI)‐based segmentation of tumors in brain images is more enhancing and attracting in current years of research studies. It is due to non‐invasive examination and good contrast prone to soft tissues of images obtained from MRI modality. Medical approval of different segmentation techniques depends on the benchmark and simplicity of the method. This article incorporates both fully‐automatic and semi‐automatic methods for segmentation. The outlook study of this article is to provide the summary of most significant segmentation methods of tumors in brain using MRI. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 295–304, 2016  相似文献   

20.
Particle swarm optimization (PSO) is a population-based, heuristic technique based on social behaviour that performs well on a variety of problems including those with non-convex, non-smooth objective functions with multiple minima. However, the method can be computationally expensive in that a large number of function calls is required. This is a drawback when evaluations depend on an off-the-shelf simulation program, which is often the case in engineering applications. An algorithm is proposed which incorporates surrogates as a stand-in for the expensive objective function, within the PSO framework. Numerical results are presented on standard benchmarking problems and a simulation-based hydrology application to show that this hybrid can improve efficiency. A comparison is made between the application of a global PSO and a standard PSO to the same formulations with surrogates. Finally, data profiles, probability of success, and a measure of the signal-to-noise ratio of the the objective function are used to assess the use of a surrogate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号