首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Segmentation of tumors in human brain aims to classify different abnormal tissues (necrotic core, edema, active cells) from normal tissues (cerebrospinal fluid, gray matter, white matter) of the brain. In existence, detection of abnormal tissues is easy for studying brain tumor, but reproducibility, characterization of abnormalities and accuracy are complicated in the process of segmentation. The magnetic resonance imaging (MRI)‐based segmentation of tumors in brain images is more enhancing and attracting in current years of research studies. It is due to non‐invasive examination and good contrast prone to soft tissues of images obtained from MRI modality. Medical approval of different segmentation techniques depends on the benchmark and simplicity of the method. This article incorporates both fully‐automatic and semi‐automatic methods for segmentation. The outlook study of this article is to provide the summary of most significant segmentation methods of tumors in brain using MRI. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 295–304, 2016  相似文献   

2.
In this work, a simple and efficient CAD (computer‐aided diagnostic) system is proposed for tumor detection from brain magnetic resonance imaging (MRI). Poor contrast MR images are preprocessed by using morphological operations and DSR (dynamic stochastic resonance) technique. The appropriate segmentation of MR images plays an important role in yielding the correct detection of tumor. On examination of three views of brain MRI, it was visible that the region of interest (ROI) lies in the middle and its size ranges from 240 × 240 mm2 to 280 × 280 mm2. The proposed system makes effective use of this information and identifies four blocks from the desired ROI through block‐based segmentation. Texture and shape features are extracted for each block of all MRIs in the training set. The range of these feature values defines the threshold to distinguish tumorous and nontumorous MRIs. Features of each block of an MRI view are checked against the threshold. For a particular feature, if a block is found tumorous in a view, then the other views are also checked for the presence of tumor. If corresponding blocks in all the views are found to be tumorous, then the MRI is classified as tumorous. This selective block processing technique improves computational efficiency of the system. The proposed technique is well adaptive and fast, and it is compared with well‐known existing techniques, like k‐means, fuzzy c‐means, etc. The performance analysis based on accuracy and precision parameters emphasizes the effectiveness and efficiency of the proposed work.  相似文献   

3.
At an airport, the information of the number and positions of airplanes is very important for the applications of air navigation. Especially, the information from airplane extraction and identification is significant in both civil and military remote sensing. In this paper, according to the characteristics of airplanes and airport in satellite remote sensing images, a new airplane image segmentation algorithm is proposed based on improved pulse-coupled neural network (PCNN) with wavelet transform, and airplane identification algorithm is carried out by using modified Zernike moments. Firstly, for an original image, a PCNN model is improved and then used to do image segmentation by combining the wavelet transform. Then, in order to reduce the number of irrespective targets in the image and increase the processing speed, the airplanes in the original image are roughly detected on the characteristics of the segmented object contour geometries. Finally, the Zernike moments are modified and then applied to identify the roughly detected airplanes accurately. By comparing to the five traditional image segmentation algorithms for the same airplane images, the testing results show that the improved PCNN image segmentation algorithm can segment and detect airplane regions at an airport accurately at a high recognising rate and with high recognising stability, and it is not affected by the image shadows and rotations.  相似文献   

4.
A novel automatic image segmentation technique in magnetic resonance imaging (MRI) based on di-phase midway convolution and deconvolution network is proposed. It consists of three convolutional and deconvolutional blocks for downsampling and upsampling layers respectively. In first block, each input slice is separately convolved using two paths with 3 × 3 and 7 × 7 kernels to produce different feature maps. Then the mean value of these feature maps is processed into upcoming blocks in downsampling and upsampling layers. This processed outcome is classified and segmented using softmax classification. Further, the volume, probability density distribution of tumor, and normal tissue regions are calculated using tissue-type mapping technique. This method is extensively tested with BRATS 2012, BRATS 2013, and BRATS 2018 data sets. Our experimental results achieved higher dice similarity coefficient values of 24.3%, 27.5%, and 3.4%, respectively, for these three data sets when compared to the state-of-art brain tumor segmentation methods.  相似文献   

5.
Segmentation of Brain tumor from the magnetic resonance imaging (MRI) of head scans is an essential requirement for clinical diagnosis since manual segmentation is a fatigue and time‐consuming process. Recent computer‐aided diagnosis systems depend on the development of fully automatic methods to overcome these problems. In the present work, a fully automated algorithm is proposed to extract and segment tumor regions from multimodal magnetic resonance imaging (MMMRI) sequences. The algorithm has three phases: (a) tumor portion extraction, (b) tumor substructure segmentation, and (c) 3D postprocessing. First, the algorithm extracts tumor portion using a set of image processing operations from T2, fluid‐attenuated inversion recovery (FLAIR), and T1C images. Here, the proposed modified fuzzy c means clustering algorithm is used for enhancing the tumor portion extraction process. Then, the substructures of tumor such as edema, enhancing tumor, and necrotic regions are segmented from MMMRI sequences, T2, FLAIR, and T1C using region‐wise set operations in Phase II. Finally, 3D visualization of the segmented tumor and volume estimation is performed as postprocessing in Phase III. The proposed work was experimented on BraTS 2013 dataset. The quantitative analysis is performed using William's Index, Dice, sensitivity, specificity, and accuracy and is compared with 19 state‐of‐the‐art methods. The proposed method yields comparable results as 77%, 53%, and 59% of Dice for complete, core, and enhancing tumor regions, respectively.  相似文献   

6.
In medical imaging, segmenting brain tumor becomes a vital task, and it provides a way for early diagnosis and treatment. Manual segmentation of brain tumor in magnetic resonance (MR) images is a time‐consuming and challenging task. Hence, there is a need for a computer‐aided brain tumor segmentation approach. Using deep learning algorithms, a robust brain tumor segmentation approach is implemented by integrating convolution neural network (CNN) and multiple kernel K means clustering (MKKMC). In this proposed CNN‐MKKMC approach, classification of MR images into normal and abnormal is performed by CNN algorithm. At next, MKKMC algorithm is employed to segment the brain tumor from the abnormal brain image. The proposed CNN‐MKKMC algorithm is evaluated both visually and objectively in terms of accuracy, sensitivity, and specificity with the existing segmentation methods. The experimental results demonstrate that the proposed CNN‐MKKMC approach yields better accuracy in segmenting brain tumor with less time cost.  相似文献   

7.
Magnetic resonance imaging (MRI) brain image segmentation is essential at preliminary stage in the neuroscience research and computer‐aided diagnosis. However, presence of noise and intensity inhomogeneity in MRI brain images leads to improper segmentation. The fuzzy entropy clustering (FEC) is often used to deal with noisy data. One major disadvantage of the FEC algorithm is that it does not consider the local spatial information. In this article, we have proposed an improved fuzzy entropy clustering (IFEC) algorithm by introducing a new fuzzy factor, which incorporates both local spatial and gray‐level information. The IFEC algorithm is insensitive to noise, preserves the image detail during clustering, and is free of parameter selection. The efficacy of IFEC algorithm is demonstrated by comparing it quantitatively with the state‐of‐the‐art segmentation approaches in terms of similarity index on publically available real and simulated MRI brain images.  相似文献   

8.
对称结构模态振型的Zernike矩描述方法   总被引:2,自引:0,他引:2  
讨论了利用Zernike矩描述对称结构模态振型的方法,通过对结构的模态振型数据进行Zernike矩变换,将其分解成一系列Zernike矩的线性组合,而每一个Zernike矩反映模态振型的一部分形状特征.不同特征矩的线性组合,可以代表各阶模态的振型.在此基础上进一步提出了确定Zernike多项式最高阶数的方法,并讨论了Zernike矩描述对称结构模态振型的方法及其去噪声的能力.通过对简单圆盘结构的仿真实例研究,验证了应用Zernike矩描述对称结构模态振型的优越性.结果表明;利用Zernike矩描述对称结构的模态振型可以更有效地描述对称结构的模态,包括重模态,同时还能有效地消除测试数据中噪声的影响,对进一步实现对称结构有限元模型修正和模型确认具有重要的应用价值.  相似文献   

9.
This proposed work is aimed to develop a rapid automatic method to detect the brain tumor from T2‐weighted MRI brain images using the principle of modified minimum error thresholding (MET) method. Initially, modified MET method is applied to produce well segmented and sub‐structural clarity for MRI brain images. Further, using FCM clustering the appearance of tumor area is refined. The obtained results are compared with corresponding ground truth images. The quantitative measures of results were compared with the results of those conventional methods using the metrics predictive accuracy (PA), dice coefficient (DC), and processing time. The PA and DC values of the proposed method attained maximum value and processing time is minimum while compared to conventional FCM and k‐means clustering techniques. This proposed method is more efficient and faster than the existing segmentation methods in detecting the tumor region from T2‐weighted MRI brain images. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 77–85, 2015  相似文献   

10.
Segmentation of brain tumor images is an important task in diagnosis and treatment planning for cancer patients. To achieve this goal with standard clinical acquisition protocols, conventionally, either classification algorithms are applied on multimodal MR images or atlas‐based segmentation is used on a high‐resolution monomodal MR image. These two approaches have been commonly regarded separately. We propose to integrate all the available imaging information into one framework to be able to use the information gained from the tissue classification of the multimodal images to perform a more precise segmentation on the high‐resolution monomodal image by atlas‐based segmentation. For this, we combine a state of the art regularized classification method with an enhanced version of an atlas‐registration approach including multiscale tumor‐growth modeling. This contribution offers the possibility to simultaneously segment subcortical structures in the patient by warping the respective atlas labels, which is important for neurosurgical planning and radiotherapy planning. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 59–63, 2013  相似文献   

11.
Abnormal cells in human brain lead to the development of tumors. Manual detection of this tumor region is a time-consuming process. Hence, this paper proposes an efficient and automated computer-aided methodology for brain tumor detection and segmentation using image registration technique and classification approaches. This proposed work consists of the following modules: image registration, contourlet transform, and feature extraction with feature normalization, classification, and segmentation. The extracted features are optimized using genetic algorithm, and then an adaptive neuro-fuzzy inference system classification approach is used to classify the features for the detection and segmentation of tumor regions in brain magnetic resonance imaging. A quantitative analysis is performed to evaluate the proposed methodology for brain tumor detection using sensitivity, specificity, segmentation accuracy, precision, and Dice similarity coefficient.  相似文献   

12.
(Aim) COVID-19 is an ongoing infectious disease. It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional computer vision methods have achieved promising results on the automatic smart diagnosis. (Method) This study aims to propose a novel deep learning method that can obtain better performance. We use the pseudo-Zernike moment (PZM), derived from Zernike moment, as the extracted features. Two settings are introducing: (i) image plane over unit circle; and (ii) image plane inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder (DSSAE) as the classifier. Besides, multiple-way data augmentation is chosen to overcome overfitting. The multiple-way data augmentation is based on Gaussian noise, salt-and-pepper noise, speckle noise, horizontal and vertical shear, rotation, Gamma correction, random translation and scaling. (Results) 10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%, a precision of 92.53% ± 1.03%, and an accuracy of 92.31% ± 1.08%. Its F1 score, MCC, and FMI arrive at 92.29% ±1.10%, 84.64% ± 2.15%, and 92.29% ± 1.10%, respectively. The AUC of our model is 0.9576. (Conclusion) We demonstrate “image plane over unit circle” can get better results than “image plane inside a unit circle.” Besides, this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.  相似文献   

13.
Stereotactic neuro‐radiosurgery is a well‐established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft‐tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and growth. Therefore, particular attention must be deserved to these hypoxic areas that could lead to recurrent cancers and resistance to therapeutic damage. This article proposes a novel fully automatic method for necrosis extraction (NeXt), using the Fuzzy C‐Means algorithm, after the GTV segmentation. This unsupervised Machine Learning technique detects and delineates the necrotic regions also in heterogeneous cancers. The overall processing pipeline is an integrated two‐stage segmentation approach useful to support neuro‐radiosurgery. NeXt can be exploited for dose escalation, allowing for a more selective strategy to increase radiation dose in hypoxic radioresistant areas. Moreover, NeXt analyzes contrast‐enhanced T1‐weighted MR images alone and does not require multispectral MRI data, representing a clinically feasible solution. This study considers an MRI dataset composed of 32 brain metastatic cancers, wherein 20 tumors present necroses. The segmentation accuracy of NeXt was evaluated using both spatial overlap‐based and distance‐based metrics, achieving these average values: Dice similarity coefficient 95.93% ± 4.23% and mean absolute distance 0.225 ± 0.229 (pixels).  相似文献   

14.
Gliomas segmentation is a critical and challenging task in surgery and treatment, and it is also the basis for subsequent evaluation of gliomas. Magnetic resonance imaging is extensively employed in diagnosing brain and nervous system abnormalities. However, brain tumor segmentation remains a challenging task, because differentiating brain tumors from normal tissues is difficult, tumor boundaries are often ambiguous and there is a high degree of variability in the shape, location, and extent of the patient. It is therefore desired to devise effective image segmentation architectures. In the past few decades, many algorithms for automatic segmentation of brain tumors have been proposed. Methods based on deep learning have achieved favorable performance for brain tumor segmentation. In this article, we propose a Multi-Scale 3D U-Nets architecture, which uses several U-net blocks to capture long-distance spatial information at different resolutions. We upsample feature maps at different resolutions to extract and utilize sufficient features, and we hypothesize that semantically similar features are easier to learn and process. In order to reduce the computational cost, we use 3D depthwise separable convolution instead of some standard 3D convolution. On BraTS 2015 testing set, we obtained dice scores of 0.85, 0.72, and 0.61 for the whole tumor, tumor core, and enhancing tumor, respectively. Our segmentation performance was competitive compared to other state-of-the-art methods.  相似文献   

15.
Fully automatic brain tumor segmentation is one of the critical tasks in magnetic resonance imaging (MRI) images. This proposed work is aimed to develop an automatic method for brain tumor segmentation process by wavelet transformation and clustering technique. The proposed method using discrete wavelet transform (DWT) for pre‐ and post‐processing, fuzzy c‐means (FCM) for brain tissues segmentation. Initially, MRI images are preprocessed by DWT to sharpen the images and enhance the tumor region. It assists to quicken the FCM clustering technique and classified into four major classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background (BG). Then check the abnormality detection using Fuzzy symmetric measure for GM, WM, and CSF classes. Finally, DWT method is applied in segmented abnormal region of images respectively and extracts the tumor portion. The proposed method used 30 multimodal MRI training datasets from BraTS2012 database. Several quantitative measures were calculated and compared with the existing. The proposed method yielded the mean value of similarity index as 0.73 for complete tumor, 0.53 for core tumor, and 0.35 for enhancing tumor. The proposed method gives better results than the existing challenging methods over the publicly available training dataset from MICCAI multimodal brain tumor segmentation challenge and a minimum processing time for tumor segmentation. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 305–314, 2016  相似文献   

16.
Image denoising is an integral component of many practical medical systems. Non‐local means (NLM) is an effective method for image denoising which exploits the inherent structural redundancy present in images. Improved adaptive non‐local means (IANLM) is an improved variant of classical NLM based on a robust threshold criterion. In this paper, we have proposed an enhanced non‐local means (ENLM) algorithm, for application to brain MRI, by introducing several extensions to the IANLM algorithm. First, a Rician bias correction method is applied for adapting the IANLM algorithm to Rician noise in MR images. Second, a selective median filtering procedure based on fuzzy c‐means algorithm is proposed as a postprocessing step, in order to further improve the quality of IANLM‐filtered image. Third, different parameters of the proposed ENLM algorithm are optimized for application to brain MR images. Different variants of the proposed algorithm have been presented in order to investigate the influence of the proposed modifications. The proposed variants have been validated on both T1‐weighted (T1‐w) and T2‐weighted (T2‐w) simulated and real brain MRI. Compared with other denoising methods, superior quantitative and qualitative denoising results have been obtained for the proposed algorithm. Additionally, the proposed algorithm has been applied to T2‐weighted brain MRI with multiple sclerosis lesion to show its superior capability of preserving pathologically significant information. Finally, impact of the proposed algorithm has been tested on segmentation of brain MRI. Quantitative and qualitative segmentation results verify that the proposed algorithm based segmentation is better compared with segmentation produced by other contemporary techniques.  相似文献   

17.
Three-dimensional (3D) brain tumor segmentation is a clinical requirement for brain tumor diagnosis and radiotherapy planning. This is a challenging task due to variation in type, size, location, and shape of tumors. Several methods such as particle swarm optimization (PSO) algorithm formed a topological relationship for the slices that converts 2D images into 3D magnetic resonance imaging (MRI) images which does not provide accurate results and they depend on the number of input sections, positions, and the shape of the MRI images. In this article, we propose an efficient 3D brain tumor segmentation technique called modified particle swarm optimization. Also, segmentation results are compared with Darwinian particle swarm optimization (DPSO) and fractional-order Darwinian particle swarm optimization (FODPSO) approaches. The experimental results show that our method succeeded 3D segmentation with 97.6% of accuracy rate more efficient if compared with the DPSO and FODPSO methods with 78.1% and 70.21% for the case of T1-C modality.  相似文献   

18.
In medical imaging using different modalities such as MRI and CT, complementary information of a targeted organ will be captured. All the necessary information from these two modalities has to be integrated into a single image for better diagnosis and treatment of a patient. Image fusion is a process of combining useful or complementary information from multiple images into a single image. In this article, we present a new weighted average fusion algorithm to fuse MRI and CT images of a brain based on guided image filter and the image statistics. The proposed algorithm is as follows: detail layers are extracted from each source image by using guided image filter. Weights corresponding to each source image are calculated from the detail layers with help of image statistics. Then a weighted average fusion strategy is implemented to integrate source image information into a single image. Fusion performance is assessed both qualitatively and quantitatively. Proposed method is compared with the traditional and recent image fusion methods. Results showed that our algorithm yields superior performance.  相似文献   

19.
Segmentation is the process of labeling objects in image data. It is a decisive phase in several medical imaging processing tasks for operation planning, radio therapy or diagnostics, and widely useful for studying the differences of healthy persons and persons with tumor. Magnetic Resonance Imaging brain tumor segmentation is a complicated task due to the variance and intricacy of tumors. In this article, a tumor segmentation scheme is presented, which focuses on the structural analysis on both tumorous and normal tissues. Our proposed method hits the target with the aid of the following major steps: (i) Tumor Region Location, (ii) Feature Extraction using Multi‐texton Technique, and (iii) Final Classification using support vector machine (SVM). The results for the tumor detection are validated through evaluation metrics such as, sensitivity, specificity, and accuracy. The comparative analysis is carried out by Radial Basis Function neural network and Feed Forward Neural Network. The obtained results depict that the proposed Multi‐texton histogram and support vector machine based brain tumor detection approach is more robust than the other classifiers in terms of sensitivity, specificity, and accuracy. © 2013 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 23, 97–103, 2013  相似文献   

20.
Brain tumor classification and retrieval system plays an important role in medical field. In this paper, an efficient Glioma Brain Tumor detection and its retrieval system is proposed. The proposed methodology consists of two modules as classification and retrieval. The classification modules are designed using preprocessing, feature extraction and tumor detection techniques using Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classifier. The image enhancement can be achieved using Heuristic histogram equalization technique as preprocessing and further texture features as Local Ternary Pattern (LTP) features and Grey Level Co‐occurrence Matrix (GLCM) features are extracted from the enhanced image. These features are used to classify the brain image into normal and abnormal using CANFIS classifier. The tumor region in abnormal brain image is segmented using normalized graph cut segmentation algorithm. The retrieval module is used to retrieve the similar segmented tumor regions from the dataset for diagnosing the tumor region using Euclidean algorithm. The proposed Glioma Brain tumor classification methodology achieves 97.28% sensitivity, 98.16% specificity and 99.14% accuracy. The proposed retrieval system achieves 97.29% precision and 98.16% recall rate with respect to ground truth images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号