首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 765 毫秒
1.
目的研究工艺参数对Al-Mg异种金属搅拌摩擦焊-钎焊复合焊接接头力学性能的影响。方法采用搅拌摩擦焊-钎焊方法,在不同焊接工艺参数下焊接2A12-T4铝合金和AZ31镁合金。结果当焊接速度为23.5mm/min、旋转速度为375 r/min时,焊接接头的抗拉剪力达到最大,为5.5 kN,比搅拌摩擦焊接头的最大抗拉剪力的5.0 kN提高了10%。结论搅拌摩擦焊-钎焊复合焊接的工艺参数会显著影响铝/镁异种金属接头力学性能,通过优化工艺参数能够获得力学性能优异的铝/镁异种金属焊接接头。复合焊接接头的抗拉剪力随着焊接速度的增大呈现先增大后减小的趋势。  相似文献   

2.
目的 分析Q235镀锌钢与6061铝合金搅拌摩擦钎焊接头在不同旋转速度下的组织性能。方法 使用0.3 mm的Zn作为中间层,通过搅拌摩擦钎焊,焊接6061铝合金与Q235镀锌钢,观察测试其接头组织和力学性能。结果 转速从660 r/min增加到1750 r/min时,随着进入到6061铝合金近缝区Zn元素的增加,铝合金搅拌区孔洞变小。界面Zn过渡层变薄。在适中的转速下,界面结合良好。接头最大平均拉剪力先增加后降低,界面显微硬度升高,硬度梯度增加。结论 搅拌头在1320 r/min转速下,测得搅拌摩擦钎焊接头平均拉剪力为2.33 kN。  相似文献   

3.
目的在保证搅拌速度一定时,针对8 mm厚的7A52铝合金,在不同焊接速度下采用搅拌摩擦焊(FSW)进行焊接试验,研究其焊接接头的显微组织及力学性能。方法利用搅拌摩擦焊机进行对接焊接,焊后制取金相试样观察焊接接头宏观形貌和显微组织,并测定其力学性能。结果7A52铝合金FSW焊接接头焊核区的面积随着焊接速度的增大而增大,当焊接速度为250mm/min时,焊接接头的焊核区面积最大,焊核区的显微组织都为细小的等轴晶,焊接接头横截面的焊核区呈明显"洋葱环"的形貌,而热力影响区的结构特征则呈现出了较高的塑性变形流线层。焊接接头显微硬度分布都呈现出"W"形变化,在焊接速度为150 mm/min时,焊接接头的平均抗拉强度能达到452 MPa,达到了母材抗拉强度的89%。结论通过对不同焊接速度下7A52铝合金FSW焊接接头的组织和性能进行研究,得到了不同焊接速度下焊接接头组织和力学性能。  相似文献   

4.
铝锂合金搅拌摩擦焊研究   总被引:2,自引:0,他引:2  
采用柱形带螺纹搅拌针搅拌摩擦焊接5 mm厚铝锂合金轧制板材,并对接头组织、力学性能及断裂特性进行了研究.接头形成差别明显的三个区域:焊核区、热机影响区和热影响区.拉伸实验表明,接头强度随着焊接速度的提高先增加,并于v=60mm/min处达到最大值340MPa;当v>60mm/min时,接头强度迅速下降.铝锂合金搅拌摩擦接头断裂模式为韧脆混合型断裂,并以脆性断裂为主.  相似文献   

5.
目的 为搅拌摩擦焊在轮辋钢的应用提供理论数据。方法 选用厚度为4.5 mm的江铃汽车V362轮辋钢板B380CL,采用不同的焊接参数,获得搅拌摩擦焊接头,对焊缝宏观成形及微观组织进行分析,研究焊接参数对组织的影响;通过进行拉伸试验和硬度测试,分析焊接参数对焊接接头性能的影响;对接头焊缝进行X-Ray无损探伤。结果 当搅拌头旋转速度为950 r/min,焊接速度分别为37.5, 47.5, 60 mm/min时,均能形成焊接接头。焊接速度为47.5 mm/min时,焊缝宏观成形较好,微观组织无缺陷,微观组织为铁素体和珠光体,抗拉强度最高,超过母材;焊接接头各区域微观组织硬度较母材高,伸长率较焊接速度为37.5 mm/min时的接头高。结论 搅拌摩擦焊实现轮辋钢的对接,该研究中旋转速度950 r/min,焊接速度47.5 mm/min为最佳工艺参数,接头抗拉强度超过母材。  相似文献   

6.
在不同焊接工艺参数下对3.5 mm厚的7050-T7451铝合金进行了搅拌摩擦对接焊,并对焊缝成形质量、接头微观组织演变和拉伸性能进行了深入研究。结果表明,当搅拌头旋转速度(ω)在400~1 000 r/min、焊接速度(v)在50~300 mm/min时,均可获得内部无缺陷的接头。当焊接速度不变时,随搅拌头旋转速度的增加,接头的拉伸性能先增大后减小。当搅拌头旋转速度为600 r/min、焊接速度为150 mm/min时,接头的拉伸性能最好,抗拉强度为475 MPa,强度系数达90%,伸长率为5.7%。当ω/v的值处于4~6之间时,可获得拉伸性能优良的接头。  相似文献   

7.
目的研究搅拌摩擦钎焊对强度高、去膜难的不锈钢基板的机械去膜能力以及添加钎料的必要性。方法对1060/Q235和1060/SUS304两种组合,采用大直径(40 mm)的无针搅拌头,对比有无钎料情况下的接头组织与性能,研究搅拌摩擦钎焊的去膜机制以及钎料对界面组织与性能的影响。结果搅拌摩擦钎焊后的1060/Q235和1060/SUS304两种组合,分别形成13μm与5μm厚的IMC层;Al/Q235组合仅在中心区域未出现裂纹,但在边缘的前进侧与后退侧分别出现了长达12mm与9mm的平行于界面的裂纹;虽然Al/SUS304组合界面IMC厚度薄,但出现平行于界面裂纹(整个宽度范围内)和垂直于界面的裂纹。结论搅拌摩擦钎焊借助大轴肩对两种组合都具有优良的机械去膜能力;Zn钎料的添加可进一步加速IMC的生长,Al/SUS304组合对热应力更敏感,应采用低拘束与低热输入方案。  相似文献   

8.
选用BNi68CrWB钎料,对低膨胀高温合金GH783的钎焊工艺及接头组织性能进行研究.研究表明,采取BNi68CrWB钎料、钎焊规范为1180℃/10min,钎焊试样焊后进行完全热处理,获得钎焊接头室温拉伸强度最高达到701MPa,接头650℃拉伸强度最高达到了696MPa;钎焊接头的组织由镍-钴基γ固溶体、共晶及其他脆性化合物相构成;钎焊间隙不同,接头中固溶体所占比例不同,0.05mm间隙中元素扩散较充分,接头以固溶体为主,共晶及其他脆性化合物相较少.钎焊间隙对接头性能影响较大,0.05mm钎焊间隙的接头强度明显高于0.1mm间隙接头.  相似文献   

9.
目的 研究镁合金高转速搅拌摩擦焊工艺及其对组织与性能的影响规律。方法 采用光学显微镜观察以及拉伸性能测试等方法,探索了1.5 mm厚AZ31B镁合金高转速搅拌摩擦焊接工艺,对其接头组织与力学性能进行了测试分析。结果 采用6000 r/min转速时,随着焊速从600 mm/min降低至100 mm/min,焊接接头隧道型孔洞缺陷消失;采用600 mm/min焊速时,2000~4000 r/min转速范围内可获得无缺陷的接头。拉伸测试结果表明,6000 r/min-100 mm/min焊接工艺下接头的拉伸性能最优,抗拉强度为235.33 MPa,为母材强度的87.92%。结论 镁合金采用高转速搅拌摩擦工艺可获得无缺陷的焊接接头,且采用高转速匹配低焊速的工艺可使接头的拉伸性能得到提升。  相似文献   

10.
目的 采用搅拌摩擦焊,对比分析大气环境和水下环境下铝/铜接头的组织与性能,以期获得力学性能更优异的铝/铜焊接接头。方法 利用搅拌摩擦焊,在焊接速度为40 mm/min、旋转速度为1 000 r/min的条件下,分别在大气环境和水下环境下对厚度为9 mm的6061铝合金板和T2纯铜板进行焊接。然后,对铝/铜界面、焊核区进行扫描电镜及能谱分析,并对铝/铜界面及焊核区进行物相分析,确定产物相组成。最后,对铝/铜试样进行拉伸及硬度检测。结果 铝/铜接头均无裂纹、气孔等缺陷。铜颗粒弥散分布在焊核区,铝/铜界面形成金属间化合物层。水下搅拌摩擦焊下界面元素扩散距离明显变短,且金属间化合物厚度更薄。铝/铜接头的金属间化合物为AlCu和Al4Cu9。大气环境焊接下接头的抗拉强度为130.6 MPa,断裂方式为脆性断裂;水下焊接下接头的抗拉强度为199.5 MPa,断裂方式为韧性断裂。水下环境下的接头硬度值更高,其中热影响区的硬度最低值约为65HV。结论 水下搅拌摩擦焊铝/铜接头无裂纹、气孔等缺陷。组织上,水下搅拌摩擦焊的铝/铜接头界面元素扩散距离更短,硬脆的金属间化合物更少;性能上,水下搅拌摩擦焊的铝/铜接头强度更高,抗拉强度达到199.5 MPa,达到母材的74.4%。  相似文献   

11.
目的研究不同焊接速度条件下镁铜异种合金搅拌摩擦焊接接头的成形规律。方法在保证其他焊接工艺相同的条件下,通过改变焊接速度,比较分析了焊接速度对接头的表面成形、横截面形貌特征、微观结构及力学性能的影响规律。结果随着焊接速度从118 mm/min减小至95 mm/min时,焊缝表面成形变得更光滑,飞边显著减少,内部孔洞缺陷消失,焊缝成形质量显著提高;但继续减小焊接速度至75 mm/min时,焊缝内部却再次出现孔洞缺陷。结论采用工艺参数为950 r/min的旋转速度、95 mm/min的焊接速度焊接时,焊缝成形质量最高;中心混合区主要由层片状铜合金、颗粒状镁合金和金属间化合物Mg2Cu组成;接头抗拉强度最大,达81.5 MPa。  相似文献   

12.
研究了30 mm厚铝合金5083板材双面对接焊不同焊接速度和旋转速度的焊接参数组合对焊接接头成型质量及力学性能的影响,结果表明,当焊接参数处于旋转速度为400 r/min~600 r/min,焊接速度为80mm/min~120 mm/min的工艺参数窗口内时,可以获得焊缝成型质量与抗拉性能优异的焊缝。  相似文献   

13.
目的 为了适应空间曲面构件的搅拌摩擦焊,开展6061铝合金无倾角搅拌摩擦焊工艺及性能的研究。方法 采用无倾角搅拌摩擦焊用的搅拌头,对5 mm厚6061-T6铝合金板材进行试验,研究焊缝成形及接头力学性能,并分析接头组织特征。结果 零倾角搅拌摩擦焊接头从组织上可区分为5个不同区域:焊核区(WNZ)、热力影响区(TMAZ)、热影响区(HAZ)、轴肩影响区(SAZ)和母材(BM);随着搅拌头转速增加,焊缝宽度和焊核尺寸均先变大后变小;随焊接速度增加,焊缝宽度和焊核尺寸均逐渐变小;当焊接速度固定时,随搅拌头转速增加,接头拉伸强度先增加后减小;当搅拌头转速固定时,随焊接速度增加,接头拉伸强度逐渐增大。结论 采用无倾角搅拌摩擦焊接方法,能够实现对5 mm厚6061-T6铝合金板材的有效焊接。  相似文献   

14.
石玗  周相龙  朱明  顾玉芬  樊丁 《材料导报》2017,31(10):61-64
采用脉冲旁路耦合电弧MIG熔钎焊方法对1060纯铝和T2紫铜进行了对接焊,选用ER1100、ER5356、ER4043和ER4047四种焊丝为填充材料,研究了焊丝成分对焊接接头微观组织、金属间化合物层的厚度以及力学性能的影响规律。结果表明:4种焊丝的焊接接头均由铝侧熔合区、焊缝区和铜侧钎焊区组成,其中铜侧钎焊区又可细分为金属间化合物层区和Al-Cu共晶区两部分。焊丝中Si元素的加入可以起到阻碍铝铜原子互扩散、抑制铝铜金属间化合物生长、提高焊缝显微硬度以及抗拉强度等作用;而加入Mg元素,其效果不明显。  相似文献   

15.
Copper (T2) and aluminium alloy (5A06) were welded by friction stir welding (FSW). The microstructure, mechanical properties and phase constituents of FSW joints were studied by metallography, tensile testing machine and X-ray diffraction. The results indicated that the high quality weld joint could be obtained when tool rotational speed is 950 rpm, and travel speed is 150 mm/min. The maximum value of tensile strength is about 296 MPa. The metal Cu and Al close to copper side in the weld nugget (WN) zone showed a lamellar alternating structure characteristic. However, a mixed structure characteristic of Cu and Al existed in the aluminium side of weld nugget (WN) zone. There were no new Cu-Al intermetallic compounds in the weld nugget zone.  相似文献   

16.
The effect of tool rotation speed on microstructure and mechanical properties of friction stir welded joints was investigated for Ti–6Al–4V titanium alloy. Joints were produced by employing rotation speeds ranging from 400 to 600 rpm at a constant welding speed of 75 mm/min. It was found that rotation speed had a significant impact on microstructure and mechanical properties of the joints. A bimodal microstructure or a full lamellar microstructure could be developed in the weld zone depending on the rotation speeds used, while the microstructure in the heat affected zone was almost not influenced by rotation speed. The hardness in the weld zone was lower than that in the base material, and decreased with increasing rotation speed. Results of transverse tensile test indicated that all the joints exhibited lower tensile strength than the base material and the tensile strength of the joints decreased with increasing rotation speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号