首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations. The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter α, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.  相似文献   

2.
Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.  相似文献   

3.
氧化铝有机纳米流体的流动传热基础特性   总被引:1,自引:0,他引:1       下载免费PDF全文
钟勋  俞小莉  吴俊 《化工学报》2009,60(1):35-41
以氧化铝为纳米粒子、丙二醇和水为基础液体制备了氧化铝有机纳米流体,分别测量了它的沸点、热导率、比热容和黏度。以1%~5%(体积分数)的氧化铝纳米流体作为冷介质,测试了在车用机油冷却器中的传热系数和流动阻力。试验结果表明,纳米粒子能够显著强化基础液体在机油冷却器中的换热能力,粒子体积分数和流体温度是影响纳米流体热物性的重要因素。氧化铝纳米流体的沸点高于120℃,比热容随体积分数增加而降低,热导率、黏度和在机油冷却器中的传热系数均随粒子体积分数的增加而提高。在试验Ⅱ中,5%(体积分数)纳米流体的平均传热系数比基础液体提高了124.56%,而流动阻力增幅较小。  相似文献   

4.
An analysis has been carried out to study magnetohydrodynamic boundary layer flow and heat transfer of an electrically conducting micropolar fluid over a nonlinear stretching surface with variable wall heat flux in the presence of heat generation/absorption and a non‐uniform transverse magnetic field. The governing system of partial differential equations is first transformed into a system of ordinary differential equations using similarity transformation. The transformed equations are solved numerically. Results for the dimensionless velocity, micro‐rotation, and temperature profiles are displayed graphically delineating the effects of various parameters characterising the flow. The results show that the velocity profile decreases as the magnetic parameter and the velocity exponent increase, while it increases as the material parameter increases. The results show also that the temperature profile increases as the magnetic parameter, the velocity exponent, and the heat generation parameter increase. Furthermore, the temperature profile decreases as the material parameter, the heat absorption parameter, and the Prandtl number increase.  相似文献   

5.
以与温度相关的指数定律作为本构方程,应用无网格方法模拟了外表面为恒温时的圆管内具有黏性耗散的聚合物流动热传导问题,给出了离入口不同位置处的温度分布。计算结果表明:根据黏性耗散模型计算的温度比无黏性耗散模型高出64℃,从而说明了黏性耗散在聚合物流动热传导问题中具有举足轻重的作用。并且, 无论是无黏性耗散模型,还是黏性耗散模型,其极限温度与壁面温度有很大的关系,但与入口温度无关。  相似文献   

6.
The present article considers the steady magnetohydrodynamic (MHD) laminar boundary layer flow of a viscous and incompressible electrically conducting fluid near the stagnation point on a horizontal stretching or shrinking surface, with variable surface temperature and a constant magnetic field applied normal to the surface of the sheet. The governing system of partial differential equations is first transformed into a system of ordinary differential equations by introducing an appropriate similarity transformation, which is then solved numerically using a finite‐difference scheme known as the Keller‐box method. The effects of the governing parameters on the skin friction coefficient, the local Nusselt number as well as the velocity and temperature profiles are determined and discussed. Results indicate that for the stretching sheet, solution exists and is unique for all values of the stretching/shrinking parameter $\lambda $ , while for the shrinking sheet, solutions only exist up to some critical values $\lambda = \lambda _{{\rm c}} $ , and these solutions may be unique, dual and sometimes triple. © 2011 Canadian Society for Chemical Engineering  相似文献   

7.
This paper treats about the flow and heat transfer of a viscous incompressible fluid in a porous medium over a permeable stretching surface taking into account thermal radiation and the variation of the thermal conductivity with temperature. Analytical solutions for the stream function are obtained and two cases are studied, namely, (i) prescribed surface temperature (PST case) and (ii) prescribed heat flux (PHF case). The effects of Prandtl number, permeability, suction/blowing, variable thermal conductivity, thermal radiation and surface temperature parameters on heat‐transfer characteristics are shown through tables and graphs and discussed. Ce document concerne l´écoulement et le transfer de chaleur dans le cas d´un fluide visqueux incompressible dans un milieu poreux sur une poreux surface s´étendant en tenant compte de la radiation thermique et de la conductivité thermodépendante. Les solutions analytiques pour la fonction de courant sont obtenus et deux conditions à la frontière pour la tempèrature et le flux de chaleur sont apliquées: (i) predicted surface tempèrature (PST) et (ii) le flux de chaleur predicted (PHF). Les effects du nombre de Prandtl, perméabilité, succion/soufflage, conductivité thermodépendante, radiation thermique et de la surface tempèrature sur le transfer de chaleur sont indiqués dans des tableaux et des graphiques, puis sont discutés. © 2011 Canadian Society for Chemical Engineering  相似文献   

8.
刘志刚  赵孝保  张承武 《化工学报》2007,58(9):2194-2199
以去离子水为工质,对流过内径分别为45 μm、92 μm及141 μm的微石英管内的黏性耗散对换热特性的影响进行了实验研究。通过对紧密缠绕在管外的细铜丝通电以加热管外壁,得到了Reynolds数在100~2000之间变化时的Nusselt数,同时在考虑到电双层效应的基础上计算出黏性耗散所产生的热量。实验结果表明,Re较低时,黏性耗散效应对微管内部对流换热的影响较小;随着Re的增加,黏性耗散对对流换热的影响增大,并随着微管直径的减小而明显增强。对于内径为45 μm的管,当Re达到2000左右时,黏性耗散效应对对流换热的影响超过14.1%;对于内径为141 μm的管,层流黏性耗散效应对微管内部对流换热的影响较小,基本可以忽略。  相似文献   

9.
This paper presents a study of the flow and heat transfer of an incompressible Ostwald de-Waele power-law fluid past an infinite porous plate, subject to suction at the plate. The power-law index n satisfies 0 < n < 1 (shear-thinning fluid only) provided that there is suction at the plate. Three cases are studied, namely, (i) the plate with constant surface temperature (CST case), (ii) the plate with prescribed surface temperature (PST case), and (iii) the plate with prescribed heat flux (PHF case). The effects of viscous dissipation and thermal radiation are also considered in the energy equation and the variations of dimensionless surface temperature and dimensionless surface temperature gradient with various parameters are graphed and tabulated.  相似文献   

10.
刘均洪  叶林 《化学工程》1995,23(3):68-72
以CMC水溶液为介质,对高粘幂律流体进行了垂直管内流动沸腾超临界热流的研究。测定了31组临界热流数据,建立了临界热流关联式。计算值与实验值的偏差为17.7%。  相似文献   

11.
In this paper, an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layer flow and heat transfer past a shrinking sheet with suction/injection. The flow is permeated by an externally applied magnetic field normal to the plane of flow. The self-similar equations corresponding to the velocity and temperature fields are obtained, and then solved numerically by finite difference method using quasilinearization technique. The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magnetic field. The thermal boundary layer thickness decreases with Prandtl number, radiation parameter and heat sink parameter, but it increases with heat source parameter. Moreover, increasing unsteadiness, magnetic field strength, radiation and heat sink strength boost the heat transfer.  相似文献   

12.
Modified graphene/deionized water (DW) based amphiphilic nanofluid (A-nanofluid) without surfactant was prepared through chemical method. The thermal performance of solar gravity heat pipe (SGHP) with A-nanofluid was investigated under different heating powers, incline angles and concentrations. It was found that A-nanofluid can reduce the start-up temperature of the SGHP compared with DW. Within the measured range of heating power, the thermal resistance of the SGHP filled with A-nanofluid is obviously lower than that with DW when the heating power is relatively small. However, the difference of thermal resistance of the SGHP filled with A-nanofluid and DW is almost negligible with the increase of heating power. The incline angle has great influence on the heat transfer capacity of the evaporation section when the incline angle is relatively small. When the heating power is 20 W and the nanofluid concentration (mass ratio) increases from 0.1% to 0.6%, the heat transfer coefficient of the evaporation section decreases by 54.7%; when the heating power is 40 W, the nanofluid concentration (mass ratio) increases from 0.1% to 0.6%, the heat transfer coefficient of the evaporation section decreases by 48.9%.  相似文献   

13.
针对石墨烯/水纳米流体的分散不稳定问题,采用化学方法制备了不含表面活性剂的改性石墨烯/水两亲性纳米流体,研究了以改性石墨烯/水两亲性纳米流体为工质的太阳重力热管在不同加热功率、安装角度和浓度下的热性能。结果表明,与去离子水相比,两亲性纳米流体可以降低热管的启动温度。在实验加热功率范围内,当加热功率相对较小时,两亲性纳米流体热管的热阻明显低于去离子水;随着加热功率的增加,热阻差异可以忽略。当安装角度相对较小时,其对蒸发段传热能力影响较大。当加热功率为20 W,纳米流体质量分数从0.1%增加到0.6%时,蒸发段传热系数下降了54.7%;当加热功率为40 W,纳米流体质量分数从0.1%增加到0.6%时,蒸发段传热系数下降了48.9%。  相似文献   

14.
沥青气化生产合成气过程中有大量炭黑颗粒生成,炭黑颗粒对流体的流动和传热有较大影响。文章将含有炭黑纳米粒子的合成气定义为炭黑纳米流体,建立了炭黑纳米流体的单相流体模型,并用数值模拟的方法,分析了合成气中炭黑颗粒在传热中的作用。结果表明:炭黑粒子的直径、粒子流量对传热有很大影响。适当增加炭黑粒子的流量,可以增进传热,降低流动阻力。而炭黑粒子对火管废锅的产汽量影响很小。  相似文献   

15.
This paper describes the two‐dimensional flow of an incompressible viscous fluid through a non‐porous channel with heat generation and a chemical reaction. Employing similarity transformations the governing non‐linear partial differential equations are solved both analytically and numerically. Analytically, we used the homotopy analysis method and numerically, we used the Matlab in‐built boundary value solver bvp4c. The effects of the Reynolds number Re, the Eckert number Ec, heat generation parameter δ, chemical reaction parameter γ, and the local Grashof number Gc on the velocity, temperature, and concentration fields are shown through tables and graphs and discussed.  相似文献   

16.
Viscous dissipation plays an important role in the dynamics of fluids with strongly temperature-dependent viscosity because of the coupling between the energy and momentum equations. The heat generated by viscous friction causes a local temperature increase in the high shearing zone with a consequent decrease of the viscosity which may dramatically change the temperature and velocity distribution. These processes are mainly controlled by the Brinkman number, the rotating velocity and the thermal boundary conditions. This work analyses forced convection heat transfer including the viscous dissipation in a scraped surface heat exchanger (SSHE). In this study the increase of the temperature due to the viscous dissipation is analysed both experimentally and numerically for Newtonian and non-Newtonian fluids. Heat transfer simulations including viscous dissipation were carried out by means of the CFD code of the software Fluent, version 6.3, with solving momentum and energy equations. Two thermal boundary conditions were considered: pseudo-adiabatic wall and constant temperature on the stator wall exchange. In the case of Newtonian fluid (pure HV45), for both considered thermal boundary conditions, an important increase of the temperature was obtained. In the case of non-Newtonian shear thinning fluid (2 wt% CMC solution), viscous dissipation is neglected. The developed numerical model agrees well with experimental results. The validated numerical model was then used to study the effect of index and consistency behaviour of shear thinning fluid using power-law rheological behaviour on the viscous dissipation, and correlation using dimensionless analysis expressed with different dimensionless process numbers is proposed for Newtonian and non-Newtonian shear thinning fluid.  相似文献   

17.
18.
This article addresses the magnetohydrodynamics (MHD) flow of a third grade fluid over an exponentially stretching sheet.Analysis is carried out in the presence of first order chemical reaction.Both cases of constructive and destructive chemical reactions are reported.Convergent solutions of the resulting differential systems are presented in series forms.Characteristics of various sundry parameters on the velocity,concentration,skin friction and local Sherwood number are analyzed and discussed.  相似文献   

19.
This article investigates the influence of radiation and temperature‐dependent viscosity on the problem of unsteady MHD flow and heat transfer of an electrically conducting fluid past an infinite vertical porous plate taking into account the effect of viscous dissipation. The governing equations are converted into a system of nonlinear ordinary differential equations via a local similarity parameter which is taken as a function of time. The resulting system of coupled nonlinear ordinary differential equations is solved numerically using the fourth order Runge–Kutta integration scheme with the shooting method. The numerical results for the velocity and the temperature are displayed graphically showing the effects of various parameters. The results show that increasing the Eckert number and decreasing the viscosity of air leads to a rise in the velocity, while increasing in the magnetic or the radiation parameters is associated with a decrease in the velocity. Also, an increase in the Eckert number leads to an increase in the temperature, whereas an increase in radiation parameter leads to a decrease in the temperature.  相似文献   

20.
A numerical analysis has been carried out to study magnetohydrodynamic boundary layer flow, heat and mass transfer characteristics on steady two‐dimensional flow of an electrically conducting fluid over a stretching sheet embedded in a non‐Darcy porous medium in the presence of thermal radiation and viscous dissipation. The governing partial differential equations are convected into a system of nonlinear ordinary differential equations by similarity transformation and are solved numerically by using the Successive linearisation method, together with the Chebyshev pseudo‐spectral collocation method. The effects of various parameters on the velocity, temperature, and concentration fields as well as on the skin‐friction coefficient are presented graphically and in tabular forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号