首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Murphy MG  Wright V  Scott J  Timmins A  Ackman RG 《Lipids》1999,34(2):115-124
This investigation was carried out to characterize the effects of specific dietary marine oils on tissue and plasma fatty acids and their capacity to generate metabolites (prostanoids, lipid peroxides). Young male guinea pigs were fed nonpurified diet (NP), or NP supplemented (10%, w/w) with menhaden fish oil (MO), harp seal oil (SLO), or corn oil (CO, control diet) for 23 to 28 d. Only the plasma showed significant n−3 polyunsaturated fatty acid (PUFA)-induced reductions in triacylglycerol (TAG) or total cholesterol concentration. Proportions of total n−3 PUFA in organs and plasma were elevated significantly in both MO and SLO dietary groups (relative to CO), and in all TAG fractions levels were significantly higher in MO-than SLO-fed animals. The two marine oil groups differed in their patterns of incorporation of eicosapentaenoic acid (EPA). In guinea pigs fed MO, the highest levels of EPA were in the plasma TAG, whereas in SLO-fed animals, maximal incorporation of EPA was in the heart polar lipids (PL). In both marine oil groups, the greatest increases in both docosahexaenoic acid (22∶6n−3, DHA) and docosapentaenoic acid (22∶5n−3, DPA) relative to the CO group, were in plasma TAG, although the highest proportions of DHA and DPA were in liver PL and heart TAG, respectively. In comparing the MO and SLO groups, the greatest difference in levels of DHA was in heart TAG (MO>SLO, P<0.005), and in levels of DPA was in heart PL (SLO>MO, P<0.0001). The only significant reduction in proportions of the major n−6 PUFA, arachidonic acid (AA), was in the heart PL of the SLO group (SLO>MO=CO, P<0.005). Marine oil feeding altered ex vivo generation of several prostanoid metabolites of AA, significantly decreasing thromboxane A2 synthesis in homogenates of hearts and livers of guinea pigs fed MO and SLO, respectively (P<0.04 for both, relative to CO). Lipid peroxides were elevated to similar levels in MO- and SLO-fed animals in plasma, liver, and adipose tissue, but not in heart preparations. This study has shown that guinea pigs respond to dietary marine oils with increased organ and plasma n−3 PUFA, and changes in potential synthesis of metabolites. They also appear to respond to n−3 PUFA-enriched diets in a manner that is different from that of rats.  相似文献   

2.
Diets rich in linoleic acid (CO) from corn oil, or in linoleic acid and either α-linolenic acid (LO) based on linseed oil or n−3 fatty acids (MO) from menhaden oil were fed to male and female Cynomolgus monkeys for 15 wk. In the liver a 40% reduction of α-tocopherol occurred in the MO group relative to the CO and LO groups followed by increased formation of lipofuscinin vivo. A four-fold increase of α-tocopherol in the MO diet (MO+E) brought the level in the liver to that found with CO and LO. The increased peroxidation in the MO group in the liver phospholipids was associated with the replacement of 60% of the n−6 fatty acids by n−3 fatty acids from menhaden oil. Similar fatty acid profiles were found in groups fed MO and MO+E, respectively. Compared to the CO fed group, feeding α-linolenic acid only resulted in a slight incorporation of n−3 fatty acids in the liver membranes mainly due to a direct incorporation of α-linolenic acid. However, in monkeys fed menhaden oil more than 30% of the total fatty acids in the liver phospholipids were n−3 fatty acids. The various diets did not influence the activity of liver catalase (EC 1.11.1.6) nor superoxide dismutase (EC 1.15.1.1), but glutathione-peroxidase activity (EC 1.11.1.9) was higher in monkeys fed the MO diet. The catalase activity in females was 20% higher than in males. In anin vitro assay, liver microsomes from monkeys fed the MO diet or the MO diet supplemented with tocopherol produced similar amounts of thiobarbituric acid reactive substances and at a much higher rate than microsomes from the CO and LO groups. It appeared that α-tocopherol did not protect long-chain n−3 C20 and C22 fatty acids as well as n−6 fattya acids against peroxidation. The present data showed that monkeys were not fully able to compensate for increased peroxidative stress but a four-fold supplement of vitamin E to the diets reduced the oxidation.  相似文献   

3.
N. W. Schoene  A. Ferretti  D. Fiore 《Lipids》1981,16(11):866-869
Menhaden oil (MO), whose polyunsaturated fatty acids consist mainly of (n−3) fatty acids, was fed to spontaneously hypertensive rats to determine the effect of (n−3) fatty acid on the in vitro production of prostaglandins produced from arachidonic acid (20∶4[n−6]). Capacity to form PGE2 and PGF was impaired in homogenates of kidney medullae and cortices from rats fed the MO diet compared to rats fed the control diet. The lower amounts of diene prostaglandins produced corresponded to the decrease in the amount of 20∶4 (n−6) in the tissue. Possibly changes produced in tissue lipids by dietary fatty acids affect prostaglandin production by reducing the availability of substrate in tissue lipids.  相似文献   

4.
B. R. Lokesh  J. E. Kinsella 《Lipids》1985,20(12):842-849
Three groups of male mice were fed a normal diet or a semisynthetic diet containing either 10% hydrogenated coconut oil (CO group) or 10% menhaden oil (MO group) for two wk. The synthetic diet altered the fatty acid composition of lung microsomal lipids. Mice ingesting menhaden oil contained greater amounts of eicosapentaenoic acid (20∶5 n−3), docosapentaenoic acid (22∶5 n−3) and docosahexaenoic acids (22∶6 n−3) and decreased amounts of n−6 fatty acids such as arachidonic and adrenic. Synthesis of prostaglandin E2 and prostaglandin F from exogenous arachidonic acid was significantly depressed in n−3 fatty acid-enriched lung microsomes. These studies indicated that dietary fish oil not only alters the fatty acid composition of lung microsomes but also lowers the capacity of lungs to synthesize prostaglandins from arachidonic acid.  相似文献   

5.
The fatty acid composition of diacyl- and alkylacylglycerophosphocholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), alkenylacyl-glycerophosphoethanolamine (aPE), and diacyl- and alkylacyl-glycerophosphoethanolamine (dPE) was assessed in isolated splenocytes from C3H/Hen mice fed one of four purified isocaloric diets for six weeks. Diets contained 20% by weight of either a high-linoleate sunflower oil (Hi 18∶2), a high-oleate sunflower oil (Hi 18∶1), a mixture of 17% menhaden fish oil and 3% high-linoleate sunflower oil (Hi n−3), or a mixture of 17% coconut oil and 3% high-linoleate sunflower oil (Hi SFA). Spleen weight and immune cell yield were significantly higher (P<0.05) in mice fed the Hi 18∶1 or the Hi n−3 diets compared with those fed the Hi 18∶2 and Hi SFA diets. Distinctive patterns of fatty acids were observed for each phospholipid in response to dietary fatty acids. Dietary fat significantly affected (P<0.05) total polyunsaturated fatty acids (PUFA) in PC and dPE, total saturated fatty acids (SFA) in PC, total monounsaturated fatty acids (MUFA), and n−3 PUFA in all phospholipid classes examined. In mice fed the Hi n−3 diet, n−3 PUFA were significantly elevated, whereas n−6 PUFA decreased in all of the phospholipids. In these mice, eicosapentaenoic acid (EPA) was the predominant n−3 PUFA in PC and PI, whereas docosahexaenoic acid (DHA) was the major n−3 PUFA in aPE and PS. Interestingly, the ratios of n−3/n−6 PUFA in the phospholipids from these mice were 3.2, 2.4, 1.8, 0.8 and 0.8 for aPE, PS, dPE, PC and PI, respectively. These data suggest a preferential incorporation of n−3 PUFA into aPE, PS and dPE over PC and PI.  相似文献   

6.
Logue JA  Howell BR  Bell JG  Cossins AR 《Lipids》2000,35(7):745-755
Larval Dover sole fed an Artemia diet supplemented with n−3 long-chain (C20+C22) polyunsaturated fatty acids (PUFA) are known to be more resistant to low-temperature injury. Here we explore the relationship between tissue fatty acid composition and tolerance of stressful environmental conditions over the larval and early juvenile periods. Artemia nauplii supplemented with n−3 long-chain PUFA-deficient and PUFA-enriched oil emulsions were fed to two groups of larvae. Whole body tissue samples from the resulting PUFA-deficient and-enriched juveniles possessed 12.1 and 21.9% n−3 long-chain PUFA, respectively. These differences were at the expense of C18 PUFA, while proportions of saturated fatty acids, monousaturated fatty acids, and total PUFA were unaffected. Brain and eye tissues from the PUFA-deficient fish contained lower levels of 22∶6n−3, known to be important for optimal nervous system function, incorporation instead a range of fatty acids of lower unsaturation. PUFA-deprived juveniles showed substantially greater mortality when exposed to a combination of low temperature and low salinity, as well as to high temperature and to hypoxia. After adaptation to the different diets, both dietary groups were fed a common formulated feed high in n−3 long-chain PUFA. Tissue PUFA in both groups progressively increased to the same high value, with a consequent loss of the differences in cold-susceptibility. These correlated changes support a link between dietary manipulation of n−3 long-chain PUFA and development of a stress-sensitive phenotype. PUFA deprivation had no detectable effect upon static hydrocarbon order of purified brain membranes (as assessed by fluorescence polarization) but was associated with an increase in the whole-body content of prostaglandins. We conclude that susceptibility to environmental stress is responsive to dietary n−3 long-chain PUFA manipulation, possibly due to altered tissue development or the overproduction of eicosanoids.  相似文献   

7.
The effects of different dietary oils on the fatty acid compositions of liver phospholipids and the desaturation and elongation of [1-14C]18∶3n−3 and [1-14C]18∶2n−6 were investigated in isolated hepatocytes from Atlantic salmon. Atlantic salmon smolts were fed diets containing either a standard fish oil (FO) as a control diet, a 1∶1 blend of Southern Hemisphere marine oil and tuna orbital oil (MO/TO), sunflower oil (SO), borage oil (BO), or oliver oil (OO) for 12 wk. The SO and BO diets significantly increased the percentages of 18:2n−6, 18:3n−6, 20:2n−6, 20:3n−6, and total n-6 polyunsaturated fatty acids (PUFA) in salmon liver lipids in comparison with the FO diet. The BO diet also increased the percentage of 20:4n−6. Both the SO and BO diets significantly reduced the percentages of all n−3 PUFA in comparison with the FO diet. The OO diet significantly increased the percentages of 18:1n−9, 18:2n−6, total monoenes, and total n−6 PUFA in liver lipids compared to the FO diet, and the percentages of all n−3 PUFA were significantly reduced. With [1-14C]18:3n−3, the recovery of radioactivity in the products of Δ6 desaturation was significantly greater in the hepatocytes from salmon fed SO, BO, and OO in comparison with the FO diet. The BO diet also increased the recovery of radioactivity in the products of Δ5 desaturation. Only the BO diet significantly affected the desaturation of [1-14C]18:2n−6, increasing recovery of radioactivity in both Δ6- and Δ5-desaturation products. In conclusion, dietary BO, enriched in γ-linolenic acid (18:3n−6), significantly increased the proportions of both 20:3n−6 and 20:4n−6 in salmon liver phospholipids and also significantly increased the desaturation of both 18:2n−6 and 18:3n−3 in salmon hepatocytes. The possible relationships between dietary fatty acid composition, tissue phospholipid fatty acid composition, and desaturation/elongation activities are discussed.  相似文献   

8.
A cross-fostering design was used to examine the effects on brain and behavioral development in mice of pre-and/or postnatal dietary supplementation with n−3 fatty acids. Pregnant mice were fed either of two liquid diets, control (con) or experimental (exp). Each diet provided 3% of the calories in the form of n−6 fatty acids; the experimental diet was supplemented with an additional 1.5% from long chain n−3 fatty acids derived from fish oil. There were four treatment groups, with all pups fostered at birth. These groups were (prenatal diet/ postnatal diet): Group 1, exp/exp; Group 2, exp/con; Group 3, con/exp; Group 4, con/con; a fifth control group (unfostered) was fed lab chow (LC) throughout the study. Animals from the exp/exp and con/con groups were weaned onto lab chow for later behavioral assessment. Prenatal n−3 supplementation resulted in a small acceleration of behavioral development. The adult animals did not differ in visual discrimination learning nor did they differ in visual acuity. During development the fatty acid composition of the brain membrane phospholipids reflected closely that of the pre- and postnatal dietary conditions. Levels of 22∶5n−3 and 22∶6n−3 increased in the n−3 supplemented groups, accompanied by a decrease in levels of 22∶4n−6 and 22∶5n−6; the net effect of these changes was to increase the total levels of C22 fatty acids. While these results support considerable plasticity of the fatty acid composition of the developing brain with respect to the immediate dietary availability of n−3 compounds, they do not support long term effects on learning capacity of n−3 supplementation during the developmental period.  相似文献   

9.
Zhirong Jiang  Jeong S. Sim 《Lipids》1992,27(4):279-284
The purpose of this study was to examine the effects of feeding n−3 polyunsaturated fatty acid (PUFA)-enriched chicken eggs on plasma and liver cholesterol levels and fatty acid composition in rats. Eggs were collected from laying hens fed diets containing 10% flax seed (Hn−3), 12% sunflower seed (Hn−6), or wheat and soybean meal control (CON). Yolk powders were prepared and fed at the 15% level to weanling female Sprague-Dawley rats for 28 days. Consumption of n−3 PUFA-enriched yolks significantly reduced both plasma and liver total cholesterol. Liver total lipids and phospholipids of rats fed Hn−3 diet were enriched with linolenic, eicosapentaenoic, and docosahexaenoic acids with a concomitant reduction of arachidonic acid in liver phospholipids. The plasma cholesterol of rats fed yolk powders enriched with n−6 PUFA (mainly linoleic acid) was reduced to the same extent as in those fed the n−3 enriched, but the liver cholesterol was significantly increased, indicating differential effects of dietary n−3 and n−6 PUFA. The results demonstrated that the cholesterolemic and tissue lipid modulating properties of chicken eggs could be modified in a favorable way by altering the fatty acid composition of yolk lipids through manipulation of laying hen diets.  相似文献   

10.
C. -E. Høy  G. Hølmer 《Lipids》1988,23(10):973-980
The influence of the linoleic acid levels of diets containing partially hydrogenated marine, oils (HMO) rich in isomeric 16∶1, 18∶1, 20∶1 and 22∶1 fatty acids on the fatty acid profiles of lipids from rat liver, heart and adipose tissue was examined. Five groups of rats were fed diets containing 20 wt% fat−16% HMO+4% vegetable oils. In these diets, the linoleic acid contents varied between 1.9% and 14.5% of the dietary fatty acids, whereas the contents oftrans fatty acids were 33% in all groups. A sixth group was fed a partially hydrogenated soybean oil (HSOY) diet containing 8% linoleic acid plus 32%trans fatty acids, mainly 18∶1, and a seventh group, 20% palm oil (PALM), with 10% linoleic acid and notrans fatty acids. As the level of linoleic acid in the HMO diets increased from 1.9% to 8.2%, the contents of (n−6) polyunsaturated fatty acids (PUFA) in the phospholipids increased correspondingly. At this dietary level of linoleic acid, a plateau in (n−6) PUFA was reached that was not affected by further increase in dietary 18∶2(n−6) up to 14.5%. Compared with the HSOY- or PALM-fed rats, the plateau value of 20∶4(n−6) were considerably lower and the contents of 18∶2(n−6) higher in liver phosphatidylcholines (PC) and heart PC. Heart phosphatidylethanolamines (PE) on the contrary, had elevated contents of 20∶4(n−6), but decreased 22∶5(n−6) compared with the PALM group. All groups fed HMO had similar contents oftrans fatty acids, mainly 16∶1 and 18∶1, in their phospholipids, irrespective of the dietary 18∶2 levels, and these contents were lower than in the HSOY group. High levels of linoleic acid consistently found in triglycerides of liver, heart and adipose tissue of rats fed HMO indicated that feeding HMO resulted in a reduction of the conversion of linoleic acid into long chain PUFA that could not be overcome by increasing the dietary level of linoleic acid.  相似文献   

11.
The effects of dietary lipids on the fatty acid composition of hyaline cartilage, epiphyseal chondrocytes (EC) and matrix vesicles (MV) were evaluated in chicks. A basal semipurified diet was fed to chicks containing one of the following lipid sources at 70 g/kg: soybean oil, butter+corn oil, margarine+corn oil or menhaden oil+corn oil (MEC). Articular and epiphyseal growth cartilage were isolated from the proximal tibiotarsus; EC and MV were subsequently released by trypsin (EC 3.4.21.4) and collagenase (EC 3.4.24.3) digestion followed by ultracentrifugation. The fatty acid composition of polar lipids in chick epiphyseal cartilage at three and six weeks, as well as articular cartilage, EC and MV at eight weeks of age revealed the presence of high levels of saturated and monounsaturated fatty acids (up to 85.5%) but low levels of n−6 polyunsaturated fatty acids (PUFA) (2.6–10.2%). Mead acid (20∶3n−9,>3%) was also present in cartilage, EC and MV lipids, and was unaffected by the dietary lipid treatments. Total n−3 PUFA concentrations were the highest in cartilage, EC and MV of chicks consuming MEC. Feeding MEC lowered the levels of 20∶4n−6 in cartilage, but increased 20∶5n−3 levels. The data are consistent with those reported previously which showed that cartilage tissues are low in n−6 PUFA and that they contain 20∶3n−9. We furthermore demonstrated that the PUFA composition of cartilage can be modified by dietary lipids.  相似文献   

12.
Three groups of sixteen male rats each were fed semipurified diets containing 15% by weight of lipid for a period of 4 wk. The diets contained the same amount of polyunsaturated fatty acids (PUFA) (20% of total fatty acids) and saturated fatty acids (19% of total fatty acids). Dietary PUFA were represented exclusively by linoleic acid (18∶2 diet), or 10% linoleic acid and 10% linolenic acid (18∶3 diet), or 10% linoleic acid and 10% long-chain n−3 fatty acids (LCn−3 diet). The overall amount of vitamin E was similar in the three diets,i.e, 140, 133 and 129 mg/kg diet, respectively. Following appropriate extraction, tocopherol levels in heart, liver, brain, adipose tissue (AT) and plasma were measured by high-performance liquid chromatography. The level of vitamin E in the heart decreased with n−3 PUFA diets, most markedly with LCn−3 PUFA. Liver and AT vitamin E contents also decreased with n−3 PUFA diets when expressed as μg/mg total lipids and μg/mg phospholipids, respectively. Total plasma vitamin E was lower in rats fed the LCn−3 diet, but there was no significant difference when expressed as μg/mg total lipids. Brain vitamin E was not affected by the various diets.In vitro cardiac lipid peroxidation was quantified by the thiobarbituric acid reactive substances (TBARS) test. Heart homogenates were incubated at 37°C for 15 and 30 min in both the absence (uninduced) or presence (induced) of a free radical generating system (1 mM xanthine, 0.1 IU per mL xanthine oxidase, 0.2 mM/0.4 mM Fe/ethylenediaminetetraacetic acid). TBARS release was time-independent but significantly higher when LCn−3 fatty acids were fed to rats in either the uninduced or induced system. The study demonstrated that n−3 PUFA diets can influence vitamin E status of rats even in short-term experiments and can change the susceptibility of the heart toin vitro lipid peroxidation.  相似文献   

13.
The effects of clofibrate on the content and composition of liver and plasma lipids were studied in mice fed for 4 wk on diets enriched in n−6 or n−3 polyunsaturated fatty acids (PUFA) from sunflower oil (SO) or fish oil (FO), respectively; both oils were fed at 9% of the diet (dry weight basis). Only FO was hypolipidemic. Both oil regimes led to slightly increased concentrations of phospholipids (PL) and triacylglycerols (TG) in liver as compared with a standard chow diet containing 2% fat. Clofibrate promoted hypolipidemia only in animals fed SO. Its main effect was to enlarge the liver, such growth increasing the amounts of major glycerophospholipids while depleting the TG. SO and FO consumption changed the proportion of n−6 or n−3 PUFA in liver and plasma lipids in opposite ways. After clofibrate action, the PUFA of liver PL were preserved better than in the absence of oil supplementation. However, most of the drug-induced changes (e.g., increased 18∶1n−9 and 20∶3n−6, decreased 22∶6/20∶5 ratios) occurred inrrespective of lipids being rich in n−6 or n−3 PUFA. The concentration of sphingomyelin (SM), a minor liver lipid that virtually lacks PUFA, increased with the dietary oils, decreased with clofibrate, and changed its fatty acid composition in both situations. Thus. oil-increased SM had more 22∶0 and 24∶0 than clofibrate-decreased SM, which was significantly richer in 22∶1 and 24∶1.  相似文献   

14.
Kim HK  Choi H 《Lipids》2001,36(12):1331-1336
This study was designed to examine the effects of dietary n−3 and n−6 polyunsaturated fatty acids (PUFA) on postprandial lipid levels and fatty acid composition of hepatic membranes. Male Sprague-Dawley rats were trained for a 3−h feeding protocol and fed one of five semipurified diets: one fat-free diet or one of four diets supplemented with 10% (by weight) each of corn oil, beef tallow, perilla oil, and fish oil. Two separate experiments were performed, 4-wk long-term and 4-d short-term feeding models, to compare the effects of feeding periods. Postprandial plasma lipid was affected by dietary fats. Triacylglycerol (TG) and total cholesterol levels were decreased in rats fed perilla oil and fish oil diets compared with corn oil and beef tallow diets. Hepatic TG and total cholesterol levels were also reduced by fish oil and perilla oil diets. Fatty acid composition of hepatic microsomal fraction reflected dietary fatty acids and their metabolic conversion. The major fatty acids of rats fed the beef tallow diet were palmitic, stearic, and oleic. Similarly, linoleic acid (LA) and arachidonic acid in the corn oil group, α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) in the perilla oil group, and palmitic acid and docosahexaenoic acid (DHA) in the fish oil group were detected in high proportions. Both long- and short-term feeding experiments showed similar results. In addition, microsomal DHA content was negatively correlated with plasma lipid levels. Hepatic lipid levels were also negatively correlated with EPA and DHA contents. These results suggest that n−3 ALA has more of a hypolipidemic effect than n−6 LA and that the hypolipidemic effect of n−3 PUFA may be partly related to the increase of EPA and DHA in hepatic membrane.  相似文献   

15.
The higher incidence of inflammatory diseases in Western countries might be related, in part, to a high consumption of saturated fatty acids and n−6 polyunsaturated fatty acids (PUFA) and an insufficient intake of n−3 fatty acids. The purpose of this study was to examine the effects of dietary n−3 fatty acids on innate and specific immune response and their anti-inflammatory action in models of contact and atopic dermatitis. Balb/C mice were fed for 3 wk either n−6 or n−3 PUFA-fortified diets. After inducing a contact or an atopic dermatitis, immunological parameters were analyzed to evaluate the anti-inflammatory potential of these n−3 PUFA. n−3 PUFA reduced innate and specific immune responses through inhibition of TH1 and TH2 responses, increase of immunomodulatory cytokines such as IL-10, and regulation of gene expression. The inhibition of both kinds of responses was confirmed by the anti-inflammatory effect observed in contact and atopic dermatitis. Reduction in weight, edema, thickness, leukocyte infiltration, and enhancement of antioxidant defenses in the inflamed ears of mice from both models along with the prevention of delayed-type hypersensitivity induced in atopic dermatitis proved n−3 PUFA efficacy. Our data suggest that dietary fish oil-derived n−3 fatty acids have immunomodulatory effects and could be useful in inflammatory disorders.  相似文献   

16.
Rats adapted to a corn oil or a fish oil diet were fed a fat-free diet, and changes in phospholipid polyunsaturated fatty acids (PUFA) in the inner and outer leaflets of liver microsomal membranes were followed for 18 wk. In rats previously adapted to a corn oil diet, arachidonic acid in phosphatidylcholine and phosphatidylethanolamine in the inner and outer leaflets did not decrease quickly; rather, linoleic acid decreased more than arachidonic acid for the first three weeks of feeding the fat-free diet. Even at 18 wk, 40–50% of the beginning arachidonic acid levels were still retained. In contrast, in rats previously adapted to a fish oil diet, the n−3 PUFA were quickly decreased by the fat-free diet to only 10–30% at 18 wk. Due to the appearance and increase of n−9 eicosatrienoic acid in the replacement of the n−3 and n−6 PUFA, total PUFA did not decrease in the inner and outer phosphatidylcholine in either group, but decreased somewhat in the phosphatidylethanolamine due to the insufficient increase of the n−9. On the other hand, the overall degrees of unsaturation in phosphatidylcholine fatty acids were always higher in the outer than in the inner leaflets and were not altered by feeding the fat-free diet even for 18 wk. Thus, the results appear to reveal the physiological importance of unsaturation ratio of fatty acids and the necessity of arachidonic acid in each membrane leaflet.  相似文献   

17.
The effect of zinc deficiency on the levels of n−6 and n−3 polyunsaturated fatty acids (PUFA) in lipids from tissues of rats fed a diet containing linseed oil was investigated. Rats were fed either a control diet (25 mg Zn/kg) or a zinc-deficient diet (0.8 mg Zn/kg) for 10 d. To avoid energy and nutrient deficiency, 11.6 g of diet per day was administered by gastric tube. At the end of the experiment, rats fed the zinc-deficient diet had drastically reduced plasma zinc concentration and alkaline phosphatase activity consistent with severe zinc deficiency in these rats. Zinc-deficient rats had higher levels of n−3 PUFA, in particular eicosapentaenoic acid (EPA), and lower levels of n−6 PUFA, in particular linoleic acid, in liver and plasma phosphatidylcholine (PC) and in erythrocyte membrane total lipids than did control rats. By contrast, the levels of n−3 PUFA in PC from testes and heart, and in phosphatidylethanolamine (PE) from liver, testes and heart, were only slightly different between zinc-deficient and control rats. The study suggests that desaturation of α-linolenic acid is not inhibited by zinc deficiency, and that in zinc-deficient rats, n−3 PUFA preferentially incorporated into phospholipids at the expense of n−6 PUFA, especially EPA into PC. The study also shows that the effect of zinc deficiency on PUFA levels is different for PC and PE in rat tissues.  相似文献   

18.
The comparative effects of high-fat diets (20%, w/w) on eicosanoid synthesis during mammary tumor promotion in 7,12-dimethylbenz(a)anthracene (DMBA)-induced rats were studied using diets containing 20% primrose oil (PO), 20% menhaden oil (MO) or 20% corn oil (CO). Sprague-Dawley rats fed the PO or MO diet had 21% or 24% fewer adenocarcinomas, respectively, than rats fed the CO diet. Histologically (i.e., mitotic figures, inflammatory cell infiltration and necrosis), the CO-fed rats exhibited the highest frequency of changes within tumors. Plasma fatty acid composition was significantly altered by diet, reflecting the composition of the oils which were being fed. Only the plasma of PO-fed rats contained detectable levels of gamma-linolenic acid (GLA). Arachidonic acid (AA) levels were significantly higher (p<0.05) in PO-fed than in CO- or MO-fed rats. MO-fed rats had significantly higher levels of plasma palmitic acid, while palmitoleic, eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids were detected only in MO-fed rats. As expected, linoleic acid (LA) and AA levels were lower (p<0.05) in the MO-fed rats than in PO- or CO-fed groups. The plasma of the CO-fed rats contained significantly higher levels of oleic acid. Eicosanoid synthesis in mammary carcinomas of rats fed the 20%-fat diets was 2–10 times higher than in mammary fat pads of control rats. The synthesis of PGE1 and LTB4 was significantly (p<0.05) higher in PO-fed rats than in CO-fed or MO-fed rats, although PGE values were significantly (p<0.05) higher in CO-fed rats than in Mo or PO groups. The synthesis of eicosanoids in both mammary fat pads and mammary carcinomas of MO-fed rats was lower (p<0.05) than in tissues of rats fed either CO or PO diets due to less AA precursor being fed and/or to competition between n−6 and n−3 fatty acids for cyclooxygenase and lipoxygenase. The ratios of monoenoic to dienoic eicosanoids in both mammary fat pads and mammary carcinomas were higher in the PO group than in the MO or CO groups. These results suggest that inclusion of GLA (PO feeding) or EPA and DHA (MO feeding) in the diet may decrease malignancy by altering eicosanoid profiles.  相似文献   

19.
The combined effects of age and dietary n−6 and n−3 fatty acids were studied in 3-, 6- and 9-month-old rats. At each age, two groups were fed diets containing 5% (w/w) of vegetable oils rich in either 18∶3n−6 (borage group) or 18∶3n−6 plus 18∶4n−3 (black currant group), for a period increasing with age. A control group was fed the essential fatty acids 18∶2n−6 and 18∶3n−3 only. For each group, Δ6, Δ5 and δ9 desaturase activities were measured in liver microsomes, and fatty acid composition was determined in microsomal phospholipids. Desaturase activity varied as a function of age and dietary lipids. Δ6 Desaturation of 18∶3n−3 was more sensitive to these factors while Δ6 desaturation of 18∶2n−6 and Δ9 desaturation were more dependent on season than the other two. Desaturase activity was influenced more by the black currant than by the borage diet, especially at 6 and 9 months of age. A large proportion of arachidonic acid was maintained in the microsomes independent of the diet. Changes in the fatty acid composition did not strictly reflect the differences in desaturase activities. The effects of the two factors (age and diet) on the activities of the desaturases are complex, suggesting that the enzymes are susceptible to other factors as well.  相似文献   

20.
This study was designed to examine whether n−3 and n−6 polyunsaturated fatty acids at a very low dietary level (about 0.2%) would alter liver activities in respect to fatty acid oxidation. Obese Zucker rats were used because of their low level of fatty acid oxidation, which would make increases easier to detect. Zucker rats were fed diets containing different oil mixtures (5%, w/w) with the same ratio of n−6/n−3 fatty acids supplied either as fish oil or arachidonic acid concentrate. Decreased hepatic triacylglycerol levels were observed only with the diet containing fish oil. In mitochondrial outer membranes, which support carnitine palmitoyltransferase I activity, cholesterol content was similar for all diets, while the percentage of 22∶6n−3 and 20∶4n−6 in phospholipids was enhanced about by 6 and 3% with the diets containing fish oil and arachidonic acid, respectively. With the fish oil diet, the only difference found in activities related to fatty acid oxidation was the lower sensitivity of carnitine palmitoyltransferase I to malonyl-CoA inhibition. With the diet containing arachidonic acid, peroxisomal fatty acid oxidation and carnitine palmitoyltransferase I activity were markedly depressed. Compared with the control diet, the diets enriched in fish oil and in arachidonic acid gave rise to a higher specific activity of aryl-ester hydrolase in microsomal fractions. We suggest that slight changes in composition of n−3 or n−6 polyunsaturated fatty acids in mitochondrial outer membranes may alter carnitine palmitoyltransferase I activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号