首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
基于双目视觉的地形三维重建   总被引:1,自引:0,他引:1  
周瑜  李戈  张学贺  赵杰 《机械与电子》2016,(7):57-61,66
为克服传统接触式测量方法的缺点,更便捷更准确地获取地形信息,提出了基于双目视觉的地形三维重建方法。该方法对双目图像对进行了校正;并采用高效率高准确度的支撑点邻域扩展立体匹配算法获取空间点的三维信息;最后基于八叉树原理,采用曲率法精简点云,并结合改进的Delaunay三角剖分算法进行三角网格化,从而恢复地形三维模型。实验结果表明,采用本算法能够在1s内获得致密的视差图,将21841个点云精简到5463个(25%)仅用时0.7s,并且能在此基础上高效地完成三角网格剖分,实现崎岖地形的三维重建同时保留地形细节特  相似文献   

2.
为了实现彩色图像的快速立体匹配,获取准确和致密的视差图,在全局匹配基础上提出了基于区域增长的全局匹配算法,该算法将图像对按行进行区域增长匹配,匹配后的视差图再通过均值滤波器,可以滤除由于误匹配产生的不可靠视差。实验结果表明,在保证可靠性的前提下,采用改进后的匹配算法极大缩短了图像处理时间。  相似文献   

3.
提出了一种基于极曲线几何和变支持邻域的立体匹配算法来解决鱼眼立体视觉中图像变形导致的极曲线求取和匹配代价计算问题。首先,对鱼眼相机进行标定并获取相机的相关参数;针对鱼眼镜头的畸变问题,根据鱼眼镜头的优化投影模型推导出系统的极曲线方程,并利用得到的极线方程确定对应点的搜索范围。然后,根据同源像点在左右图像上的位置关系确定各中心像素点的支持邻域,并计算出不同视差条件下该支持邻域在另一幅图像上的对应支持邻域,利用获取的支持邻域计算出各点的匹配代价。最后,利用WTA(Winner Takes All)策略选取最佳匹配点得到最终的匹配结果。基于提出的极曲线和支持邻域对两组鱼眼图像进行了匹配实验并与传统方法进行了实验对比,结果表明:提出的方法的匹配准确度比传统方法分别提高了4.03%和4.64%。实验结果验证了极曲线的应用加快了匹配速度并减少了误匹配;支持邻域的使用使其对匹配代价计算的准确度优于传统方法。该算法满足了鱼眼图像立体匹配对信息获取速度、准确度和数量的要求。  相似文献   

4.
用于弱纹理场景三维重建的机器人视觉系统   总被引:1,自引:0,他引:1  
为了实现机器人在弱纹理场景中的避障和自主导航,构建了由双目相机和激光投点器构成的主动式双目视觉系统。对立体视觉密集匹配问题进行了研究:采用激光投点器投射出唯一性和抗噪性较好的光斑图案,以增加场景的纹理信息;然后,基于积分灰度方差(IGSV)和积分梯度方差(IGV)提出了自适应窗口立体匹配算法。该算法首先计算左相机的积分图像,根据积分方差的大小确定匹配窗口内的图像纹理质量,然后对超过预设方差的阈值与右相机进行相关计算,最后通过遍历整幅图像得到密集的视差图。实验结果表明:该视觉系统能够准确地恢复出机器人周围致密的3D场景,3D重建精度达到0.16mm,满足机器人避障和自主导航所需的精度。与传统的算法相比,该匹配方法的图像方差计算量不会随着窗口尺寸的增大而增加,从而将密集匹配的运算时间缩短了至少93%。  相似文献   

5.
双目立体视觉是计算机视觉研究中最为活跃的一个分支,是智能机器人科学发展的重要标志。它是由不同位置的2台或者1台摄像机(CCD)经过移动或旋转拍摄同一场景,通过图像获取、摄像机标定、特征提取和匹配,进而通过计算空间点在2幅图像中的视差,获得场景的深度信息。本文在SU—SAN角点检测的基础上,提出了基于图像平均灰度的阈值选取方法,使阈值的选取不再盲目,保证了用SUSAN算法进行角点检测的实用性和适用性。仿真试验表明,用该方法进行特征点的提取,减少了匹配时间,提高了匹配精度,得到了较好的效果。  相似文献   

6.
针对半全局立体匹配中单一 Census 精度不足且边缘区域视差效果较差的问题,提出一种基于颜色差信息 BTCensus 和加入分割约束的半全局匹配算法。首先该算法采用联合三通道 BT 算法和 Census 变换的计算方式实现代价计算,缓解重复纹理歧义并提高不连续区域配精度;同时将图像分割得到的场景信息作为约束对代价聚合函数进行改进,保证割块内部的纹理平滑,提高边界纹理区域的匹配精度;最后引入图像分割信息进行分步中值滤波,平滑视差图。实验表明,该算法在重复纹理区域、视差不连续区域和弱纹理区域都取得了较好的视差效果,可获得高匹配率的视差图。  相似文献   

7.
加权支持域硬件友好型立体匹配技术   总被引:2,自引:2,他引:0  
为了准确获取实际场景中的深度信息,本文通过引入空间距离权重,提出了同时考虑局部区域相似度和接近度的加权支持域立体匹配方法。首先,对输入图像进行滤波,去除图像中的噪声,并通过Mini-Census变换求取Hamming距离。然后,建立加权支持域,求取代价累积;进而通过winner-take-all方法求取最小匹配代价和原始视差图。最后,对原始视差图进行细化处理,得到优化的视差图,并反演出空间的深度分布。实验结果表明,利用该算法在不同光照、不同场景下均能够正确地产生视差图;对标准数据库图片进行处理时,平均错误率仅为6.77%。该算法有效地降低了计算复杂度,具有计算精度高、适应性强、鲁棒性好、便于硬件实现等特点,可为高精度实时立体匹配专用处理硬件的设计和实现提供基础。  相似文献   

8.
提出了一种改进的快速立体匹配算法。对于双目视觉系统采集的2幅图像,首先采用区域匹配算法进行初始快速立体匹配,再采用左右一致性检验剔除误匹配点,得到立体匹配的初始视差图。然后将初始视差作为图割法构图的限制条件,对初始视差图进行二值分割。最后对分割获得的前景区域和背景区域施加不同的限制,并通过修正能量函数,使构图网络大大减小,从而进一步提高了匹配速度。试验结果表明,该算法既提高了立体匹配速度,又保证了匹配精度。  相似文献   

9.
基于种子点传播的快速立体匹配   总被引:1,自引:0,他引:1  
针对计算机视觉中的对应点误匹配问题,提出了一种基于种子点传播的快速局部立体匹配算法来进一步提高匹配算法的运行效率。该算法首先利用Canny算子提取图像边缘,结合边缘信息构造动态匹配窗口,以克服固定窗口对匹配带来的不利影响;然后利用AD-Census联合匹配代价在动态窗口上进行代价聚集,用WTA搜索策略得出初始视差图,对视差值进行筛选以确定种子点;随后利用像素间颜色差异将种子点的视差值传递给周围非种子点;最后采用区域投票和局部校正方式对视差值求精,进而获取精确的稠密视差图。实验结果表明,该算法可对Middlebury测试图生成高质量的视差图。与目前较新的局部立体匹配算法相比,其运行速度提高了1.8倍,满足了实际应用对速度和精度的要求,具有较高的实用价值。  相似文献   

10.
针对机器人在作业时缺乏自主性与智能性的问题,对基于双目视觉的空间目标识别与定位问题进行了研究。搭建了双目立体视觉系统并对其进行了标定,获取了两相机的内外参数、相对位姿及畸变系数。采用基于描述子的模板匹配技术,通过随机树算法对检测到的特征点进行了准确实时地分类识别。对同一场景的两幅图像进行了立体匹配,求取了对应的视差图。结合特征点对应的视差值及标定结果对其进行了三维重建,对多组特征点对在图像及实际场景里对应的2D-3D位置信息进行了迭代,求取了重投影误差最小的解,即目标物体的位姿。研究结果表明:所采用的方法可以用于准确、快速、稳定地实现对目标的识别与定位。  相似文献   

11.
The detection of free spaces between obstacles in a scene is a prerequisite for navigation of a mobile robot. Especially for stereo vision-based navigation, the problem of correspondence between two images is well known to be of crucial importance. This paper describes multi-range approach of area-based stereo matching for grid mapping and visual navigation in uncertain environment. Camera calibration parameters are optimized by evolutionary algorithm for successful stereo matching. To obtain reliable disparity information from both images, stereo images are to be decomposed into three pairs of images with different resolution based on measurement of disparities. The advantage of multi-range approach is that we can get more reliable disparity in each defined range because disparities from high resolution image are used for farther object a while disparities from low resolution images are used for close objects. The reliable disparity map is combined through post-processing for rejecting incorrect disparity information from each disparity map. The real distance from a disparity image is converted into an occupancy grid representation of a mobile robot. We have investigated the possibility of multi-range approach for the detection of obstacles and visual mapping through various experiments.  相似文献   

12.
为了在视网膜疾病诊断中获得精度高、可视化好的视网膜,提出一种基于单目视觉的视网膜三维重建算法。该算法通过对两幅预处理图像的特征点提取确定匹配点对之间的对应关系,采用RANSAC算法去除误匹配点对,准确率高,用链匹配的方法使得多幅图像间的特征点匹配从而得到整体最优化结果。根据不同图像间特征点的对应关系,使用4通光束平差法确定空间中摄像机相对位置关系,使用PMVS算法实现视网膜的三维重建。实验结果表明,该算法具有很好的鲁棒性和稳定性,能较好地实现视网膜的三维重建。  相似文献   

13.
基于线性生长的区域立体匹配算法研究   总被引:2,自引:1,他引:1  
图像的区域立体匹配是立体视觉中的重点研究课题之一,实时可靠应用的关键在于视差图的可靠性和计算复杂度.提出了一种基于线性生长的区域立体匹配算法,实现从立体图像对中提取深度信息,获得更可靠视差图的方法.该算法包括根点选择和区域生长2个部分,获得视差图的计算时间短,利用滤波可以提高视差图的可靠度.最后对此算法生成的结果进行了比较分析.  相似文献   

14.
基于CenSurE star特征的无人机景象匹配算法   总被引:3,自引:0,他引:3       下载免费PDF全文
针对传统局部不变特征的景象匹配算法冗余点多、实时性差、抗几何变换不突出的情况,提出基于CenSurE-star的无人机(UAV)景象匹配算法。首先采用Cen Sur E特征星型滤波器(CenSurE-star)提取基准图和实时图中的特征点,并生成FREAK二进制描述符;然后将汉明距离作为特征点的相似性判定度量,采用K近邻距离比值的方法提取匹配点对;最后利用基于RANSAC的定位模型得到空间几何变换关系,实现图像匹配并获取定位点经纬坐标。算法性能评价实验表明,本文算法不仅相对于SIFT、SURF、ORB算法,对各种变换具有更好的鲁棒性,而且相对于改进的SIFT、SURF算法处理时间有更大程度的缩短,算法定位误差在0.8个像素内,尺度误差在0.02倍内,旋转角度误差在0.04°内。基于算法进行外场飞行实验,实验证明算法定位精度较高,可以适应地貌信息较少的环境,并能满足无人机视觉辅助导航的需求。  相似文献   

15.
跨座式单轨交通接触网磨损检测中,传统的人工巡检方式存在效率低下、安全性差等问题。研究了线阵立体视觉在接触网磨损检测中的应用。立体匹配是立体视觉中的重点与难点。在线阵立体匹配过程中。首先,分别提取对应的左右图像的加速分割检测特征点(FAST); 其次,对特征点生成加速鲁棒性特征(SURF)的特征向量; 最后,利用双向快速近似最近邻搜索算法得到初始匹配点集,并使用随机采样一致性确定最终匹配点集。由匹配点集生成稠密、准确的视差图,进而获得接触网的实际残高。实验结果表明,该方法能快速、准确的检测出接触网的磨损情况  相似文献   

16.
一种基于自适应窗口和图切割的快速立体匹配算法   总被引:5,自引:2,他引:3  
针对基于图切割的立体匹配算法计算量大的缺点,提出了一种新的快速立体匹配算法。首先根据图像边缘特征自适应变化窗口,并采用灰度差平方和匹配(SSD)作为相似判定准则计算初始视差图,再通过左右一致性校验去除误匹配点,在构造能量函数时,将初始视差作为能量函数的一个参考项,最后采用图切割(graph cuts)算法求取使全局能量最小的视差最优分配。通过标准图像对测试了提出的方法,并与其他方法进行了比较,实验结果表明,该算法不仅能够保留基于图切割的立体匹配算法对大的低纹理区域和遮挡像素较好处理的优点,而且匹配时间短,运行时间比原有算法约缩短了三分之二,能够满足工程实用性的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号