首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
针对传统迭代最近点(ICP)算法在点云存在重叠或部分重叠时,配准误差大且适应性差的问题,提出一种基于匹配点对加权优化的改进配准算法。首先,提出一种改进体素降采样算法对点云进行采样,减少数据量的同时提高算法对噪声的鲁棒性;然后,采用改进Sigmoid函数赋予参与配准的匹配点对不同的权重,克服传统算法忽视距离较小的匹配点对中仍具有错误点对的缺点,同时提高了配准精度和收敛速度;最后,提出一种采用奇异值分解法(SVD)求解配准参数的方法,进一步提高配准精度。设计了不同重叠度的配准实验和噪声实验,并结合曲轴三维点云重建对本文算法进行验证。实验结果表明:本文算法误差较Tr-ICP算法减少了约34.1%,较AA-ICP算法减少了约29%,配准时间较TrICP算法缩短了约16.1%。最终表明本文算法具有更高配准精度的同时,具有更好的适用性和鲁棒性。  相似文献   

2.
传统最近点迭代(ICP)算法在进行点云数据配准时,由于待配准的点集数据量很大,每个点云都要遍历一遍,所以时效性不高而且误匹配率大。针对此问题,提出先用Canny边缘检测算子对点云数据进行预处理,以此简化预处理点云的数据量,然后用K-D树搜索数据,最后再用ICP算法进行点云配准,以此来达到加快配准速度。实验证明,该方法灵活实用,简化了待匹配的点云集,能很好的解决传统最近点迭代算法中匹配慢的问题,可以很好的满足工程需要。  相似文献   

3.
应用改进迭代最近点方法的点云数据配准   总被引:6,自引:4,他引:2       下载免费PDF全文
提出了基于点云边界特征点的改进迭代最近点(ICP)方法来提高逆向工程中点云数据配准的效率和精度。首先,提出了基于点云边界特征点的初始配准方法。对点云最小包围盒进行三维空间划分,建立空间网格模型;运用边界种子网格识别及生长算法,从点云边界提取特征点,运用奇异值矩阵分解法(SVD)求出点云的变换矩阵,得到初始配准结果。然后,提出了改进的ICP精确配准方法。对点云对应点赋予权重,剔除权重大于阈值的点,通过对目标函数引入M-估计(M-estimation),剔除异常点。最后,在初始配准的基础上,运用改进的ICP方法精确配准。对经典ICP方法和改进ICP方法做对比实验,结果显示,改进方法的配准效率提高了70%以上,误差减小到0.02%。实验表明,本文方法大幅提高了点云配准的效率和精度。  相似文献   

4.
结合局部曲面拟合和广义二分优化搜索,提出了用于大尺寸自由曲面形貌测量中多视三维散乱点云自动配准的算法.首先,对点云微小局部区域进行标准最小二乘曲面拟合,根据拟合残差提取给定点云的全部非平坦区;借助图论中“邻接”与“可达”的概念以及非平坦区的空间分布统计特征,进行相邻点云非平坦区的区域聚类计算以及区域匹配,进而自动获得配准位姿初值.然后,计算源点云在目标点云中最靠近点的k邻近,并向k邻近点的局部移动最小二乘拟合曲面做正交投影,以提取对应点.最后,采用广义二分优化搜索进行位姿变换的优化求解.试验结果表明:该方法稳定、可靠,无需人工交互,适用于采样错移情形.在重叠区域内选取150个对应点进行位姿优化时,平均配准缝隙约为0.02mm,可以满足大尺寸自由曲面形貌测量的多视三维散乱点云配准的要求.  相似文献   

5.
为了避免离群值的影响,提出了混合稀疏迭代最近点(SM-ICP)方法,以实现点云精确配准。本文对稀疏表示、正则化求解和点云配准方法进行了研究。首先,利用混合正则项表示配准残差,构建混合稀疏配准函数。然后,结合交替乘子法(ADMM)构建了所提出函数的双循环优化框架。其中,混合正则项的平衡权重θ可由Sigmoid函数求解;此外,还给出了ADMM优化框架内循环中对应损失函数的标量形式。最后,推导了该标量化损失函数在点云配准中的软阈值表达式。实验结果表明,所提出SM-ICP算法的配准精度优于所对比的算法。特别的,在重叠率约为50%的斯坦福兔子配准实验中,SM-ICP算法的截断配准误差为2.04×10-4,较RobustTrimmed-ICP(Tr-ICP)算法和ICP算法的配准误差减小了一个量级,且较稀疏ICP(S-ICP)算法减小了约三倍;在其它对象、场景类型的点云配准实验中,SM-ICP算法的配准精度同样较其它对比算法更优;在具有不同层级随机噪声点云的配准实验中,SM-ICP的截断配准误差为4.90×10-6~1.33×10-4,同样较其它对比算法减小了一个量级或几倍;在发动机叶片配准实验中,本文方法成功实现了点云精确配准,而其它对比算法的配准结果中存在不同程度的点云错位情况。所提出的点云配准方法具有精确、鲁棒性和泛化性等优势。  相似文献   

6.
三维不变矩特征估计的点云拼接   总被引:3,自引:0,他引:3  
点云拼接是点云模型获取和重建的关键问题。提出一种新的三维不变矩特征估计的点云拼接方法,该方法将二维不变矩扩展到三维,用于描述点云的局部特征,设计实现了用该特征查找对应点的ICP算法。该算法先计算点云的特征描述子,由其中一个点云的点查找在另一片点云的最近邻域且特征描述子最相似的点作为这点的对应点,并建立对应点点集,其次将点集变换到以质心为原点的坐标下,然后根据对应点对集合建立协方差矩阵并对它奇异值分解,得到旋转矩阵和平移矩阵,最后迭代上述步骤直到收敛。通过人脸数据拼接的结果表明,该方法是可行有效的。  相似文献   

7.
基于点云几何信息改进的自动配准方法   总被引:1,自引:0,他引:1  
针对工业流水线上激光扫描工件获得的点云数据的配准问题,提出了一种基于点云数据几何特征改进的点云自动配准新算法.新算法首先根据点云数据中法向量的变化规律选取特征点,作为初始的匹配点集;然后运用一种根据点对间距离约束优化的随机抽样一致(RANSAC)算法对数据初始匹配;并运用k-d tree加速改进的最近点迭代(ICP)算...  相似文献   

8.
点云是目前自动驾驶、机器人、遥感、增强现实(AR)、虚拟现实(VR)、电力、建筑等领域最常用的三维数据处理形式,深度学习方法能够处理大型数据,且可自主提取特征,因此点云深度学习方法已逐渐成为研究热点。 本文综述了近十年来基于深度学习的三维点云分析方法的研究进展。 首先给出了三维点云深度学习的相关概念;然后针对点云目标检测与跟踪、分类分割、配准和匹配以及拼接这 4 种任务,分别阐述了相应的深度学习方法的原理,分析并比较了各自的优缺点;随后整理了 18 种点云数据集和 4 种点云分析任务的性能评价指标,并给出了性能对比结果;最后总结了点云分析方法目前存在的问题,对进一步的研究工作进行了展望。  相似文献   

9.
针对工业流水线上激光扫描工件获得的点云数据的配准问题,提出了一种基于点云数据几何特征改进的点云自动配准新算法。新算法首先根据点云数据中法向量的变化规律选取特征点,作为初始的匹配点集;然后运用一种根据点对间距离约束优化的随机抽样一致(RANSAC)算法对数据初始匹配;并运用k-d tree加速改进的最近点迭代(ICP)算法进行精确匹配;并运用四元数法求得配准参数。分别对提出的新算法、PCA改进算法和经典ICP算法进行了实验,并对实验结果进行了对比。对比结果表明新算法能够实现配准,并显著提高了配准的速度和精度,表明了新算法的有效性,对实际应用具有一定的现实意义。  相似文献   

10.
为提高传统脊柱图像三维重建与配准速度和精度,提出一种基于传统立方体(MC)算法和迭代最近点(ICP)算法的快速重建与配准方法。首先利用双边滤波对CT图像进行预处理,基于区域生长的思想改进MC算法,完成三维重建并获取脊柱三维模型和点云模型。然后采用ISS算法提取脊柱点云关键点,求取关键点的快速点特征直方图(FPFH),基于采样一致性(SAC-IA)方法完成初始配准,从而改善2片点云的初始位姿。最后通过K-D树加速寻找最近邻点对,并引入基于欧式距离的权重系数改进ICP算法,实现精配准。试验结果表明:重建速度较传统方法提高20%,配准速度较传统统方法从177.8s提高到41.2s,且配准结果平均误差为2.81*10-1。  相似文献   

11.
为了解决多线激光雷达在三维空间重构任务中数据吞吐量过大导致运算负担过重以及扫描俯仰范围有限的问题,本文提出了一种利用单线激光雷达与惯性测量单元GNSS/INS相互结合的多站点扫描空间重构方案及相应解算方法。首先使用单线激光雷达扫描待测空间获取三维尺度信息,然后将点云数据与对应的任意方向的航向角相结合,再利用四元数姿态解算获取各站点扫描的点云图像。为提高计算效率,使用迭代最近点算法实现站点间点云配准时,对待匹配点云数据筛选并更新。实验结果表明在保留点云数字特征前提下,单线激光雷达与GNSS/INS系统能够提高76%的运算速率。本文提出的硬件方案和解算方法不但能够实现较高的配准精度,与多线激光雷达方案相比工程成本也得到显著下降。  相似文献   

12.
叶片机器人砂带磨抛点云匹配算法优化   总被引:1,自引:0,他引:1  
为解决机器人磨抛路径中工件坐标系难以计算的问题及校正工件装夹误差,将三维点云配准技术应用到叶片机器人砂带磨抛系统中。由三维激光扫描仪扫描工件型面获得工件点云,采用基于主成分分析(PCA)的全局配准算法和改进的迭代最近点(ICP)算法完成了扫描点云和工件模型离散点云间以及不同工件扫描点云间的匹配,以获取工件坐标系和校正工件装夹误差。相关仿真和试验结果表明,优化后的算法在匹配速度与精度上有了长足改进,且加工后产品精度和质量都能满足实际加工要求。  相似文献   

13.
颅骨配准是颅面复原的重要步骤之一,其配准精度和效率对复原结果有着重要的影响。为了提高颅骨点云模型的配准精度和效率,本文提出了一种层次优化的颅骨点云配准方法。将颅骨配准分为粗配准和细配准两个过程。首先对颅骨点云模型进行去噪、简化和归一化等预处理;然后对颅骨点云模型提取特征点并计算其特征序列,根据特征序列进行约束寻找初始对应点对,并采用k-means算法剔除误匹配点,实现颅骨粗配准;最后通过加入几何特征约束的改进迭代最近点(ICP)算法实现颅骨细配准,从而达到颅骨精确配准的目的。本文分别对粗配准、细配准和先粗再细完整配准过程进行实验,结果表明:粗配准过程,与未优化的粗配准算法相比,本文优化后的粗配准算法的配准精度提高了约35%,算法耗时增加了约6%;细配准过程,与ICP算法相比,本文改进ICP算法的配准精度和收敛速度分别提高了约20%和43%,算法耗时减少了约47%;先粗再细的完整配准过程,本文算法的配准精度和收敛速度都要优于其他两种方法。证明了本文方法是一种有效的颅骨点云配准算法,可以实现颅骨点云的精确配准。  相似文献   

14.
多视点云数据快速对齐方法   总被引:3,自引:0,他引:3  
多视点云数据的对齐(拼接)问题是逆向工程研究的热点问题之一。在ICP算法的基础上,提出通过在数据测量时放置基准物体,建立点云数据对齐特征,在进行多视点云数据拼接时对对齐特征增加约束的方法,实现多视点云数据的快速对齐。并对基于三个基准点约束对齐的对齐精度进行了分析,提出了减少对齐误差的措施,最后通过实例对研究结果加以分析验证。  相似文献   

15.
应用显著纹理特征的医学图像配准   总被引:1,自引:0,他引:1  
针对传统的基于几何度量的配准方法无法配准存在局部变形的医学器官的问题,提出了应用显著纹理特征的经典迭代最近点(ICP)医学图像配准算法。该方法借鉴主动外观模型(AAM)思想对医学图像的显著纹理特征建模,将显著性强的特征点赋予较大权重,率先配准。在传统基于空间距离的图像配准基础上加入显著纹理距离。然后,模拟格式塔心理学提出的人类视觉认知过程,使用线性递减的权重平衡两种“距离”度量方式。该算法前期主要根据几何距离取得整体配准效果,后期依赖图像纹理特征使存在局部变形位置的特征点也能精确配准。最后,在腹腔肝脏图像上进行实验。实验结果表明该算法取得了较好的配准效果,准确率达78.82%,比其他几种流行算法提高了22.22%,且对图像的旋转变化不敏感。提出的算法基本解决了存在局部变形医学器官图像的配准问题,达到了精度高、鲁棒性强的配准效果。  相似文献   

16.
为了解决低分辨率深度相机获取复杂场景下物体精确位姿信息困难的问题,提出一种基于点云场景分割与改进配准算法的物体位姿估计方法。首先,提出采用结构光三维扫描仪来扫描制作目标物体模板,以消除由理论模型直接生成模板所带来的差异性。而后,提出了一种基于两步法的物体分割方式,能够快速准确地完成场景点云中目标物体的分割。最后,提出一种结合法线夹角约束与邻域数约束的关键点提取算法,能够有效提取模板与场景点云中具有大曲率特征且非噪声的关键点,紧接着在关键点处计算 FPFH 特征描述,并基于随机采样一致性完成物体粗配准与初始位姿估计。为提高位姿估计精度,进一步采用带法线夹角约束的改进 ICP 算法,完成物体初始位姿估计的精确修正。通过试验对所提方法进行了验证,对比现有基于点云配准的位姿估计方法,位姿估计误差明显减小,有效证明了所提方法的可行性。  相似文献   

17.
POS系统是移动测量系统的重要组成部分,其位置姿态精度一直受到广泛关注。结合全站仪、激光跟踪仪、GNSS授时装置等传感器,设计了动态精度检测系统,开展了POS系统动态精度检测方法研究。主要采用单次测量时间统计、平滑曲线拟合等方法探测检测系统的测量误差,并在误差剔除的基础上,结合ICP算法,利用跟踪仪高精度测量数据,对全站仪数据进行修正,提高检测系统整体测量精度。最后,在某实验区,进行车载POS系统动态跟踪实验,分别采用整体轨迹对比和实时点位对比方法进行POS系统事后处理精度检测和实时导航精度检测。实验结果表明:采用该种检测方法,动态检测系统能检测出POS实时和事后处理的动态定位精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号