首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 421 毫秒
1.
采用沉淀法制备了表面包裹Yb_2O_3的ZrB_2-SiC-Yb_2O_3复合粉体(不同含量的Yb_2O_3作为烧结助剂),并在1900℃无压烧结制备了ZrB_2-SiC-Yb_2O_3复合材料.研究Yb_2O_3添加量对复合材料致密化和性能的影响.结果表明,Yb_2O_3的添加在促进ZrB_2-SiC烧结致密的同时,也提高了ZrB2-SiC复合材料的力学性能.添加10% Yb_2O_3(质量分数, 下同)的ZrB_2-SiC复合材料的相对密度为89%,抗弯曲强度为158 MPa,断裂韧性为2.95 MPa·m~(1/2).  相似文献   

2.
采用放电等离子烧结方法(SPS),在烧结温度为1700 ℃下,制备出ZrB_2-SiC-B_4C复合材料,研究了添加不同量的碳化硼(B_4C)对BrB_2-SiC基陶瓷力学性能和微观组织的影响.结果表明:ZrB_2-SiC-5%B_4C(质量分数, 下同)材料的高温强度高于ZrB_2-SiC-3%B_4C材料的高温强度,两种材料的致密度都在95%左右.加入B4C之后,材料的断裂韧性较未加入B4C材料的高.  相似文献   

3.
以P_2O_5 和 ZrO_2 为复合成核剂,Sb_2O_3为澄清剂,通过传统熔体冷却法制得掺稀土La_2O_3的SiO_2-Li_2O-K_2O- B_2O_3系统基础玻璃.利用DSC、XRD、SEM和力学性能测试等方法研究La_2O_3含量对玻璃析晶行为、析出晶相种类及微晶玻璃力学性能的影响.结果表明:La_2O_3含量对基础玻璃的第一析晶峰对应的温度影响较大,对第二析晶峰对应的温度影响不明显;当La_2O_3的含量小于0.40%(摩尔分数)时,La_2O_3的引入不改变微晶玻璃主晶相类型;当La_2O_3含量增加到0.80%时,La_2O_3直接参与晶相组成,析出LaPO_4晶相;同时,La_2O_3的引入提高了二硅酸锂晶相的析出温度;当La_2O_3含量为0.40%时,微晶玻璃的抗弯强度和弹性模量达到最高值,分别为328 MPa和143 GPa;当La_2O_3含量小于0.40%和大于1.20%时,微晶玻璃的断裂韧性随La_2O_3的增加变化较小;当La_2O_3含量为0.40%~1.20%时,微晶玻璃的断裂韧性随La_2O_3含量的增加而大幅度增加,最大断裂韧性达到3.34 MPa·m~(1/2).  相似文献   

4.
以BaZrO_3为基体材料,通过改变La_2O_3的添加量,研究其对BaZrO_3基陶瓷型芯性能的影响。结果表明,随着La_2O_3添加量的增多,型芯试样的线收缩和体积密度逐渐减小,气孔率逐渐增大,抗弯强度逐渐降低,高温挠度先减小后增大。当La_2O_3的添加量为5%时,型芯试样具有较高抗弯强度和更加优异的高温抗变形能力。  相似文献   

5.
采用真空热压烧结工艺制备了不同La_2O_3含量(0,0.3,0.6,0.9,1.2 mass%)的Mo_2NiB_2金属陶瓷材料,用电子万能材料试验机测定材料的弯曲强度与断裂韧性,用X射线衍射仪(XRD)、扫描电镜(SEM)观察分析材料的物相和组织结构。结果表明:随着La_2O_3含量的增加,Mo_2NiB_2金属陶瓷断裂韧性逐渐下降,当La_2O_3含量为0.6 mass%时,其弯曲强度值达到最大,为1050.36 MPa;Mo_2NiB_2金属陶瓷断裂的断裂方式表现为:Mo_2NiB_2相呈现脆性解理断裂,Ni基固溶体相主要为韧窝延性断裂。  相似文献   

6.
稀土Lu_2O_3增强氮化硅陶瓷的结构与性能   总被引:1,自引:0,他引:1  
以稀土氧化物Lu_2O_3作为单一添加剂,研究在热处理过程中,稀土氧化物对氮化硅在粉体状态下相变的影响.指出氮化硅粉体的α→β相变率与稀土氧化物的添加量、粉体的热处理温度之间的关系.发现热处理温度在1650 ℃以下时,氮化硅粉体的相变率随着添加剂含量的异常变化.以上述制备的β-氮化硅晶种,在不进行化学处理的情况下直接用于氮化硅陶瓷的增韧,使得所制备的氮化硅陶瓷在保持原有的室温强度基本不变的情况下,断裂韧性得到大幅度提高.在此体系中研究了β-氮化硅晶种的增韧效果及机制.分析了晶粒尺寸及其分布与氮化硅陶瓷性能及显微结构之间的关系.研究表明:以Lu_2O_3为单一添加剂的自增韧氮化硅陶瓷,晶种的加入使材料在保持强度的同时,断裂韧性提高了10%~20%.  相似文献   

7.
采用氧化锆、氧化镱和氧化镧固相合成法制备了3种不同成分的热障涂层材料(La_(x )Yb_(1-x))_2Zr_2O_7(x=0,0.5,1.0),经高温无压烧结制备出相对理论密度≥97%的力学性能测试样品。通过三点弯曲法和热机械分析法分别测试了材料的室温弯曲强度和高温杨氏模量。实验结果表明,焦绿石结构的La_2Zr_2O_7和萤石结构的Yb_2Zr_2O_7互相掺杂形成的有限固溶体La Yb Zr_2O_7具有细晶结构,其材料的室温弯曲强度比纯La_2Zr_2O_7相的有所提高,也有利于减缓热障涂层材料在1200℃以上的高温杨氏模量降低程度。  相似文献   

8.
以ZrB_2、SiC纳米管(SiCNTs)为主要原料,通过放电等离子法烧结制备了SiC纳米管/ZrB_2复合陶瓷。分析了SiC纳米管添加量对复合陶瓷的相对密度、微观结构和力学性能的影响。结果表明:添加SiC纳米管可以有效增强ZrB_2陶瓷的力学性能;当SiC纳米管的添加量为1 mass%时,复合陶瓷的力学性能最佳,其抗弯强度为786.53 MPa,维氏硬度为21.58 GPa,断裂韧性为5.21 MPa·m~(1/2)。  相似文献   

9.
以h-BN、ZrO_2、SiC粉体为原料,添加8%(质量分数,下同)的A_2O_3-Y_2O_3为烧结助剂,采用放电等离子烧结技术快速制备了h-BN-ZrO_2-SiC复相陶瓷,研究了纳米SiC颗粒添加量对h-BN-ZrO_2-SiC复相陶瓷的致密化、显微结构及力学性能的影响。结果表明:添加纳米SiC颗粒能有效促进h-BN-ZrO_2-SiC复相陶瓷的烧结和提高其致密度,复相陶瓷的力学性能随SiC添加量的增大而增大,特别是弹性模量的增加比较显著。在添加25%的纳米SiC时复相陶瓷的力学性能较好,此时复相陶瓷的断裂韧性、抗弯强度和弹性模量分别达到3.24 MPa·m~(1/2)、268.4 MPa和115 GPa。其原因主要是由于细小的SiC颗粒能较好填充复相陶瓷中的空隙,减少相间由于热失配产生的残余应力,增大裂纹扩展时断裂能的消耗,起到晶界钉扎和弥散强化作用,这均有利于复相陶瓷断裂韧性和抗弯强度的提高。  相似文献   

10.
研究了以氮化铝(AlN)为助烧剂的碳化硅晶片(SiC_(pl))增韧二硼化锆(ZrB_2)复合陶瓷材料的制备工艺,并测定其抗弯强度、断裂韧性、致密度和显微硬度.利用扫描电子显微镜(SEM)观察了样品的表面及断面形貌.复合陶瓷中SiC晶片的添加量分别为5%, 10%, 15%以及20%(体积分数, 下同),AlN作为烧结助剂添加量为3%.结果表明:适量SiC晶片的添加提高了SiC_(pl)/ZrB_2复合陶瓷的烧结致密度;SiC_(pl)/ZrB_2复合陶瓷的力学性能比纯ZrB_2陶瓷有所提高,抗弯强度和维氏硬度在5%SiC晶片添加量时达到最大,分别为(625.34±21.46) MPa和(14.60±0.84) GPa;断裂韧性在15%SiC晶片添加量时达到最大值(8.35 ± 0.26) MPa·m~(1/2).断口形貌观察表明主要增韧机制为裂纹偏转与晶片拔出.  相似文献   

11.
以溶胶凝胶法合成的亚微米级和市售微米级ZrB_2粉体为原料,B4C和Mo为烧结助剂,在氩气气氛下,常压烧结制得ZrB_2-SiC复相超高温陶瓷材料.研究结果表明,亚微米级ZrB_2超细粉体的加入对ZrB_2-SiC复相陶瓷的常压烧结致密化有一定的促进作用,但对材料性能的影响不太明显.当超细粉体占到粉体质量的30%时,材料的相对密度约为97%.复相材料的三点抗弯强度为(327±56) MPa,弹性模量为(365±30) GPa,维氏硬度和断裂韧性分别为(12.30±0.75) GPa和(3.39±0.35) MPa·m~(1/2).另外,从材料的SEM照片明显看出,在压痕棱角尖端出现裂纹分叉现象,同时在裂纹延伸过程中发生偏转,断裂模式多为穿晶断裂,较少为沿晶断裂.  相似文献   

12.
采用高温反应熔渗工艺制备了ZrB2-SiC和La2O3改性ZrB2-SiC涂层C/C复合材料,对比了2种涂层试样在中温(7001100℃)、高温(12001500℃)和超高温(2000℃以上)3个温域范围内的抗氧化性能。结果表明:7001100℃范围内,随着温度的升高,La2O3改性涂层试样的抗氧化性能提升幅度在逐渐提高。1200℃1500℃范围内,涂层均表现出良好的长时抗氧化性能,La2O3改性ZrB2-SiC在1200℃下恒温氧化250 h后,仍保持微量的增重;涂层复合材料良好的高温抗氧化性能主要其在是由于氧化过程中涂层表面形成的La-Si-O复合玻璃层和钉扎相ZrSiO4的协同作用提升了氧化膜的高温稳定性。在2000℃以上的氧乙炔火焰烧蚀环境下,La2O3的添加使得ZrB2-SiC涂层的质量烧蚀率和线烧蚀率均降低了近50%,其主要归因于表层La-Si-O和ZrO2玻璃层对烧蚀缺陷的愈合作用。  相似文献   

13.
Y2O3掺杂ZrB2-SiC基超高温陶瓷的抗烧蚀性能   总被引:1,自引:0,他引:1  
为改善ZrB2-SiC基超高温陶瓷的抗氧化和抗烧蚀性能,在制备过程中加入Y2O3。用氧乙炔火焰法来考察ZrB2-SiC-Y2O3的抗氧化和抗烧蚀性能。采用SEM和XRD分析烧蚀前后形貌及物相。材料在加热和冷却过程中没有出现开裂现象,说明其具有良好的抗热冲击性能。微观组织分析表明,氧化层主要由4层组成,且氧化层与基体层没有明显的剥离。结果表明:Y2O3的添加可以将氧化产物中的高温稳定相稳定到室温,减少由于相变发生的体积膨胀,改善氧化层与基体层的粘结性能。  相似文献   

14.
C/C复合材料具有优异的高温力学性能,是航空航天领域最具发展前景的结构材料之一,但在高温含氧环境中的氧化问题严重地限制了其实际应用。涂层技术是提升基体抗氧化能力的有效手段,因ZrB_2-SiC陶瓷涂层具有优异的抗氧化、抗烧蚀、抗热震等性能,非常适合作为C/C复合材料的高温防护涂层。首先,介绍了ZrB_2-SiC陶瓷涂层在氧化和烧蚀过程中组织结构的演变规律,阐明了该涂层的高温防护机理;然后,综述了该涂层的主要制备方法(包埋法、CVD、等离子喷涂)及每种方法的优点与不足,并对不同方法所制备涂层的抗氧化性和抗烧蚀性进行了比较;之后,针对该涂层研究和应用中存在的问题,如涂层致密性差、元素分布不均匀、应用温度范围窄、与基体热匹配性差等,从粉体改性和掺杂改性两方面总结了该涂层的改性研究现状,重点阐述了对ZrB_2-SiC粉末进行喷雾造粒和感应等离子球化处理对于提升等离子喷涂涂层性能的重要意义;最后,从涂层制备、涂层结构设计、涂层改性、涂层性能测试等方面,指出了该涂层体系存在的主要问题和未来的发展方向。  相似文献   

15.
采用料浆浸渍结合树脂浸渍裂解法制备了含9.73 wt.% LaB6的LaB6-C/C预制体,再利用反应熔体浸渍法(RMI)制备了LaB6改性C/C-ZrC-SiC复合材料,考察了材料的微观结构和烧蚀行为,探究LaB6对材料抗烧蚀性能的作用机理。结果表明:在热流密度为2380 kw/m2的氧乙炔焰烧蚀120 s后,LaB6改性C/C-ZrC-SiC复合材料的质量烧蚀率和线烧蚀率分别为1.05×10-3 g/s和2.17×10-3 mm/s,较未改性C/C-ZrC-SiC复合材料分别降低了74.8 %和61.9 %。烧蚀过程中,LaB6发生氧化反应生成La2O3和B2O3,La2O3与ZrO2之间的固溶作用以及化学反应,再加之液态B2O3具有促进固相反应传质的作用,使得材料表面形成大面积连续稳定的ZrO2-La2Zr2O7-La0.1Zr0.9O1.95熔融态保护层,这是材料优异抗烧蚀性能的主要原因。  相似文献   

16.
以二硼化锆、正硅酸乙酯、蔗糖为原料,采用溶胶-凝胶法制备ZrB2-SiC前躯体,然后利用热压反应烧结方法,在1800℃,30MPa压力,流动的Ar气氛条件下,制备出高致密的ZrB2-SiC复合材料。其最大相对密度达到99.6%。ZrB2-SiC复合材料的抗弯强度和断裂韧性都随着SiC含量的增加先增加后降低。当SiC含量为20%时,ZrB2-SiC复合材料断裂韧性最大达到5.1MPa·m1/2。ZrB2-SiC复合材料的最大弯曲强度为272MPa,比报道出的值要低,这可能与过大的ZrB2晶粒有关。但当SiC含量为30%时,由于出现大量气孔而使材料不致密,从而导致其力学性能下降。  相似文献   

17.
ZrB_2-SiC陶瓷基复合材料抗氧化性能的研究   总被引:1,自引:0,他引:1  
将C纤维增强不同成分配比的ZrB_2-SiC复相陶瓷在1400 ℃下进行静态抗氧化实验,研究了成分配比及氧化时间对材料氧化过程的影响.通过分析氧化后材料的氧化增重率、氧化试样的背散射电子照片,研究氧化过程中ZrB_2-SiC陶瓷微观结构的变化,在此基础上探讨该温度下材料氧化的微观机制.结果表明,氧化初期形成的玻璃相在试样表面形成了一层有效的保护层,这层氧化膜保护层使得该复相陶瓷的氧化机制由反应控制向扩散控制转变,并阻止了材料内部被进一步氧化,且随氧化时间的延长这种保护作用更为明显.  相似文献   

18.
用普通反应热压方法(RHP)和反应放电等离子体方法(R-SPS)原位反应制备了ZrB2-SiC,ZrB2-SiC—ZrC,ZrB2-SiC-ZrN,以及ZrB2-SiC-AIN4种复合材料。从密度,物相以及显微结构等方面比较了两种烧结方式之间的差别,对于升温速度较慢的普通热压方法,反应分步进行,显微结构不均匀;对于升温速度快的放电等离子体烧结,原料间的自蔓延反应被点着,反应速度快,显微结构均匀。同时以红外灯的热量为点火源,引发了Zr,Si及B4C间在空气气氛下的自蔓延反应,制备了较纯及粒径约为1μm的活性粉体。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号