首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Household air pollution (HAP) is estimated to be an important risk factor for cardiovascular disease, but little clinical evidence exists and collecting biomarkers of disease risk is difficult in low-resource settings. Among 54 Nicaraguan women with woodburning cookstoves, we evaluated cross-sectional associations between 48-hour measures of HAP (eg, fine particulate matter, PM2.5) and C-reactive protein (CRP) via dried blood spots; secondary analyses included seven additional biomarkers of systemic injury and inflammation. We conducted sub-studies to calculate the intraclass correlation coefficient (ICC) in biomarkers collected over four consecutive days in Nicaragua and to assess the validity of measuring biomarkers in dried blood by calculating the correlation with paired venous-drawn samples in Colorado. Measures of HAP were associated with CRP (eg, a 25% increase in indoor PM2.5 was associated with a 7.4% increase in CRP [95% confidence interval: 0.7, 14.5]). Most of the variability in CRP concentrations over the 4-day period was between-person (ICC: 0.88), and CRP concentrations were highly correlated between paired dried blood and venous-drawn serum (Spearman ρ = .96). Results for secondary biomarkers were primarily consistent with null associations, and the sub-study ICCs and correlations were lower. Assessing CRP via dried blood spots provides a feasible approach to elucidate the association between HAP and cardiovascular disease risk.  相似文献   

2.
This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time‐resolved CO and time‐integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6‐day periods in November 2011 – April 2012 and October 2012 – March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2, and highest 1‐h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor‐attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self‐reported use of kitchen exhaust was associated with lower NOX, NO2, and highest 1‐h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.  相似文献   

3.
The province of Lodi is located in northern Italy on the Po River plain, where high background levels of air pollutants are prevalent. Lodi province is characterized by intensive agriculture, notably animal husbandry. This paper assesses indoor levels of selected airborne pollutants in 60 homes in the province, with special attention to size-fractionated particulate matter (PM). Indoor PM?.? concentrations are frequently higher than current guidelines. PM?? and nitrogen dioxide also exceed the respective guideline recommendations in some cases, noting that 24-h nitrogen dioxide levels were compared with an annual limit value. All other studied pollutant levels are below current international guidelines. Among indoor PM size fractions, PM?.? is predominant in terms of mass concentrations corresponding to 57% of PM?? in summer and 71% in winter. A strong seasonal trend is observed for all studied pollutants, with higher levels in winter corresponding to changes in ambient concentrations. The seasonal variation in PM?? is largely due to PM?.? increase from summer to winter. Summer indoor PM levels are mainly from indoor-generated particles, while particles of outdoor origin represent the main contribution to winter indoor PM levels. On average, indoor concentrations of coarse PM are mostly constituted by indoor-generated particles. PRACTICAL IMPLICATIONS: This study presents a comparison between measured indoor concentrations in the study area and indoor air quality guideline criteria. Accordingly, particulate matter (PM) and NO? are identified as key pollutants that may pose health concerns. It is also found that indoor PM in residential units is mainly constituted by particles with aerodynamic diameters <0.5 μm, especially in winter. Risk mitigation strategies should be focused on the reduction in indoor levels of NO? and ultrafine and fine particles, both infiltrated from outdoors and generated by indoor sources.  相似文献   

4.
讨论了燃具标准中烟气中一氧化碳含量计算公式的使用条件以及计算中应注意的问题.  相似文献   

5.
Household air pollution (HAP) from biomass stoves is a leading risk factor for cardiopulmonary outcomes; however, its toxicity pathways and relationship with inflammation markers are poorly understood. Among 180 adult women in rural Peru, we examined the cross-sectional exposure-response relationship between biomass HAP and markers of inflammation in blood using baseline measurements from a randomized trial. We measured markers of inflammation (CRP, IL-6, IL-10, IL-1β, and TNF-α) with dried blood spots, 48-h kitchen area concentrations and personal exposures to fine particulate matter (PM2.5), black carbon (BC), and carbon monoxide (CO), and 48-h kitchen concentrations of nitrogen dioxide (NO2) in a subset of 97 participants. We conducted an exposure-response analysis between quintiles of HAP levels and markers of inflammation. Markers of inflammation were more strongly associated with kitchen area concentrations of BC than PM2.5. As expected, kitchen area BC concentrations were positively associated with TNF-α (pro-inflammatory) concentrations and negatively associated with IL-10, an anti-inflammatory marker, controlling for confounders in single- and multi-pollutant models. However, contrary to expectations, kitchen area BC and NO2 concentrations were negatively associated with IL-1β, a pro-inflammatory marker. No associations were identified for IL-6 or CRP, or for any marker in relation to personal exposures.  相似文献   

6.
Data were collected in 70 detached houses built in 2011-2017 in compliance with the mechanical ventilation requirements of California's building energy efficiency standards. Each home was monitored for a 1-week period with windows closed and the central mechanical ventilation system operating. Pollutant measurements included time-resolved fine particulate matter (PM2.5) indoors and outdoors and formaldehyde and carbon dioxide (CO2) indoors. Time-integrated measurements were made for formaldehyde, NO2, and nitrogen oxides (NOX) indoors and outdoors. Operation of the cooktop, range hood, and other exhaust fans was continuously recorded during the monitoring period. Onetime diagnostic measurements included mechanical airflows and envelope and duct system air leakage. All homes met or were very close to meeting the ventilation requirements. On average, the dwelling unit ventilation fan moved 50% more airflow than the minimum requirement. Pollutant concentrations were similar to or lower than those reported in a 2006-2007 study of California new homes built in 2002-2005. Mean and median indoor concentrations were lower by 44% and 38% for formaldehyde and 44% and 54% for PM2.5. Ventilation fans were operating in only 26% of homes when first visited, and the control switches in many homes did not have informative labels as required by building standards.  相似文献   

7.
8.
A six‐month winter‐spring study was conducted in a suburb of the northern European city of Kuopio, Finland, to identify and quantify factors determining daily personal exposure and home indoor levels of fine particulate matter (PM2.5, diameter <2.5 µm) and its light absorption coefficient (PM2.5abs), a proxy for combustion‐derived black carbon. Moreover, determinants of home indoor ozone (O3) concentration were examined. Local central site outdoor, home indoor, and personal daily levels of pollutants were monitored in this suburb among 37 elderly residents. Outdoor concentrations of the pollutants were significant determinants of their levels in home indoor air and personal exposures. Natural ventilation in the detached and row houses increased personal exposure to PM2.5, but not to PM2.5abs, when compared with mechanical ventilation. Only cooking out of the recorded household activities increased indoor PM2.5. The use of a wood stove room heater or wood‐fired sauna stove was associated with elevated concentrations of personal PM2.5 and PM2.5abs, and indoor PM2.5abs. Candle burning increased daily indoor and personal PM2.5abs, and it was also a determinant of indoor ozone level. In conclusion, relatively short‐lasting wood and candle burning of a few hours increased residents’ daily exposure to potentially hazardous, combustion‐derived carbonaceous particulate matter.  相似文献   

9.
随着社会的进步,建筑的密封性逐步提高,新风系统已经成为现在建筑中必不可少的保护居住者健康的一项设备。国内相关标准GB 50189—2009《公共建筑节能设计标准》、GB/T 18883—2002《室内空气质量标准》等对设计新风量进行了规定。通过对计算方法的分析,阐述了设计新风量对室内空气复合污染的影响,得出了更为合理的设计新风量的计算方法及新风品质的要求。  相似文献   

10.
The author presents the results of a study of tunnelling activity in the Federal Republic of Germany for the years 1985–1986, 1984–1985 and 1983–1984. The study compares six categories of tunnels for each year: underground and commuter railway tunnels; federal railway/long-distance railway tunnels; urban and highway road tunnels; water and other supply tunnels; waste tunnels; and miscellaneous tunnels. Tables and graphs are used to compare overall tunnel drivage length, excavated diameter, means of construction, e.g. mining, cut-and-cover, and placing of contracts as related to excavated volume and drivage length. The author notes that tunnels being constructed as part of the German Federal Railway's program to develop high-speed routes account for the great majority of non-urban traffic tunnel constructions, and that this trend will continue in years to come.  相似文献   

11.
A feasibility study was undertaken to assess the suitability of South African rural villages due to be electrified, for the purposes of undertaking a large-scale study of the impact of reductions in indoor air pollution on acute lower respiratory infections. As part of the feasibility study, quantitative assessments of indoor air pollution in non-electrified and electrified dwellings were performed. Concurrent measurements were made of levels of respirable particulate matter (RSP-stationary), and carbon monoxide (CO) (personal on children <18 months), as well as a stationary co-located with RSP) over a 24-h period in 52 un-electrified and 53 electrified dwellings. The proportion of dwellings with a detectable 24-h concentration of RSP was significantly higher in un-electrified (48.1%) than electrified dwellings (24.5%) (chi(2) = 6.30 on 1 d.f., P = 0.012). In addition a Kruskal-Wallis test (adjusted for ties) showed that the distribution of RSP differed between un-electrified and electrified areas (Kruskal-Wallis chi(2) = 8.20 on 1 d.f., P = 0.014). In those dwellings where some RSP was detected, the amount was on average higher in the un-electrified areas (mean 162 microg/m(3), median 107 microg/m(3)) than in the electrified areas (mean 77 microg/m(3), median 37.5 microg/m(3)). Stationary (kitchen CO) levels in un-electrified dwellings ranged from 0.36 to 20.95 p.p.m. However, in electrified dwellings, kitchen levels ranged from 0 to 11.8 p.p.m. When mean concentrations of CO were compared between electrified and un-electrified dwellings using a two-sample t-test (on log-transformed data), there was overwhelming evidence (P = 0.0004) that the mean level of log (CO) in the kitchen was higher in the un-electrified areas (1.25 vs. 0.69) and also overwhelming evidence (P < 0.0001) that the mean level of log (CO) on the child was higher in the un-electrified areas (0.83 vs. 0.34). Of importance in terms of both policy and for a potential future large-scale study, is that measurable significant differences in indoor pollutants between electrified and un-electrified dwellings during summer were found in spite of only partial transition to electricity use for cooking in electrified villages. PRACTICAL IMPLICATIONS: It is estimated that at least two-thirds of all households in the developing world are still primary dependent on biomass fuels and coal. This situation applies to 59% of rural households in South Africa. In the last decade a program of providing electricity to three million homes has been underway in South Africa. Among others this intervention aims to reduce exposure to pollutants from burning biomass fuels and reduce detrimental health effects, especially in young children. This study provides scientific evidence that electrified homes in South African villages have lower levels of air pollution (RSP and CO) relative to their non-electrified counterparts.  相似文献   

12.
Assessment of personal exposure to PM2.5 is critical for understanding intervention effectiveness and exposure-response relationships in household air pollution studies. In this pilot study, we compared PM2.5 concentrations obtained from two next-generation personal exposure monitors (the Enhanced Children MicroPEM or ECM; and the Ultrasonic Personal Air Sampler or UPAS) to those obtained with a traditional Triplex Cyclone and SKC Air Pump (a gravimetric cyclone/pump sampler). We co-located cyclone/pumps with an ECM and UPAS to obtain 24-hour kitchen concentrations and personal exposure measurements. We measured Spearmen correlations and evaluated agreement using the Bland-Altman method. We obtained 215 filters from 72 ECM and 71 UPAS co-locations. Overall, the ECM and the UPAS had similar correlation (ECM ρ = 0.91 vs UPAS ρ = 0.88) and agreement (ECM mean difference of 121.7 µg/m3 vs UPAS mean difference of 93.9 µg/m3) with overlapping confidence intervals when compared against the cyclone/pump. When adjusted for the limit of detection, agreement between the devices and the cyclone/pump was also similar for all samples (ECM mean difference of 68.8 µg/m3 vs UPAS mean difference of 65.4 µg/m3) and personal exposure samples (ECM mean difference of −3.8 µg/m3 vs UPAS mean difference of −12.9 µg/m3). Both the ECM and UPAS produced comparable measurements when compared against a cyclone/pump setup.  相似文献   

13.
Household fine particulate matter (PM2.5) pollution greatly impacts residents' health. To explore the current national situation of household PM2.5 pollution in China, a study was conducted based on literature published from 1998 to 2018. After extracting data from the literature in conformity with the requirements, the nationwide household-weighted mean concentration of household PM2.5 (HPL) was calculated. Subgroup analyses of spatial, geographic, and temporal differences were also done. The estimated overall HPL in China was 132.2 ± 117.7 μg/m3. HPL in the rural area (164.3 ± 104.5 μg/m3) was higher than that in the urban area (123.9 ± 122.3 μg/m3). For HPLs of indoor sampling sites, the kitchen was the highest, followed by the bedroom and living room. There were significant differences of geographic distributions. The HPLs in the South were higher than the North in four seasons. The inhaled dose of household PM2.5 among school-age children differed from provinces with the highest dose up to 5.9 μg/(kg·d). Countermeasures should be carried out to reduce indoor pollution and safeguard health urgently.  相似文献   

14.
A review is presented of investigations of volatile organic compound (VOC) concentrations in indoor air of buildings of different classifications (dwellings, offices, schools, hospitals) and categories (established, new and complaint buildings). Measured concentrations obtained from the published literature and from research in progress overseas were pooled so that VOC concentration profiles could be derived for each building classification/category. Mean concentrations of individual compounds in established buildings were found to be generally below 50 μg/m3, with most below 5 μg/m3. Concentrations in new buildings were much greater, often by an order of magnitude or more, and appeared to arise from construction materials and building contents. The nature of these sources and approaches to reduce indoor air concentrations by limiting source VOC emissions is discussed. Total VOC (TVOC) concentrations were substantially higher than concentrations of any individual VOCs in all situations, reflecting the large number of compounds present, but interpretation of such measurements was limited by the lack of a common definition for TVOC relevant to occupant exposure.  相似文献   

15.
Nearly half of the world's population depends on biomass fuels to meet domestic energy needs, producing high levels of pollutants responsible for substantial morbidity and mortality. We compare carbon monoxide (CO) and particulate matter (PM2.5) exposures and kitchen concentrations in households with study‐promoted intervention (OPTIMA‐improved stoves and control stoves) in San Marcos Province, Cajamarca Region, Peru. We determined 48‐h indoor air concentration levels of CO and PM2.5 in 93 kitchen environments and personal exposure, after OPTIMA‐improved stoves had been installed for an average of 7 months. PM2.5 and CO measurements did not differ significantly between OPTIMA‐improved stoves and control stoves. Although not statistically significant, a post hoc stratification of OPTIMA‐improved stoves by level of performance revealed mean PM2.5 and CO levels of fully functional OPTIMA‐improved stoves were 28% lower (n = 20, PM2.5, 136 μg/m3 95% CI 54–217) and 45% lower (n = 25, CO, 3.2 ppm, 95% CI 1.5–4.9) in the kitchen environment compared with the control stoves (n = 34, PM2.5, 189 μg/m3, 95% CI 116–261; n = 44, CO, 5.8 ppm, 95% CI 3.3–8.2). Likewise, although not statistically significant, personal exposures for OPTIMA‐improved stoves were 43% and 17% lower for PM2.5 (n = 23) and CO (n = 25), respectively. Stove maintenance and functionality level are factors worthy of consideration for future evaluations of stove interventions.  相似文献   

16.
Indoor air pollution (IAP) from biomass fuels contains high concentrations of health damaging pollutants and is associated with an increased risk of childhood pneumonia. We aimed to design an exposure measurement component for a matched case-control study of IAP as a risk factor for pneumonia and severe pneumonia in infants and children in The Gambia. We conducted co-located simultaneous area measurement of carbon monoxide (CO) and particles with aerodynamic diameter <2.5 microm (PM(2.5)) in 13 households for 48 h each. CO was measured using a passive integrated monitor and PM(2.5) using a continuous monitor. In three of the 13 households, we also measured continuous PM(2.5) concentration for 2 weeks in the cooking, sleeping, and playing areas. We used gravimetric PM(2.5) samples as the reference to correct the continuous PM(2.5) for instrument measurement error. Forty-eight hour CO and PM(2.5) concentrations in the cooking area had a correlation coefficient of 0.80. Average 48-h CO and PM(2.5) concentrations in the cooking area were 3.8 +/- 3.9 ppm and 361 +/- 312 microg/m3, respectively. The average 48-h CO exposure was 1.5 +/- 1.6 ppm for children and 2.4 +/- 1.9 ppm for mothers. PM(2.5) exposure was an estimated 219 microg/m3 for children and 275 microg/m3 for their mothers. The continuous PM(2.5) concentration had peaks in all households representing the morning, midday, and evening cooking periods, with the largest peak corresponding to midday. The results are used to provide specific recommendations for measuring the exposure of infants and children in an epidemiological study. PRACTICAL IMPLICATIONS: Measuring personal particulate matter (PM) exposure of young children in epidemiological studies is hindered by the absence of small personal monitors. Simultaneous measurement of PM and carbon monoxide suggests that a combination of methods may be needed for measuring children's PM exposure in areas where household biomass combustion is the primary source of indoor air pollution. Children's PM exposure in biomass burning homes in The Gambia is substantially higher than concentrations in the world's most polluted cities.  相似文献   

17.
饮用水水源突发性石油污染的应急处理方法研究   总被引:1,自引:0,他引:1  
采用粉末活性炭(PAC)与ClO2组合技术对水源突发性石油污染进行了应急处理试验研究.结果表明,PAC+ClO2组合技术的除油效果明显优于采用单一处理方法.在ClO2和PAC的投量分别为8和30 ms/L,PAC吸附时间为3 h的条件下,该组合工艺可将水中0.5 mg/L石油类污染物降至0.01 mg/L,满足饮用水标准中0.05 mg/L的要求.在输水管渠中间的调压阀室投加PAC,可以充分利用管渠的流行混合时间;在水厂混合反应前投加ClO2进行预氧化较为适宜.PAC+ClO2组合技术可作为饮用水水源突发石油类污染的应急处理措施.  相似文献   

18.
Dan Norbck 《Indoor air》1995,5(4):237-246
There is a growing concern about indoor air quality (IAQ) in schools. We have studied relations between subjective indoor air quality (SIAQ) and measured IAQ among school personnel (N = 97) in six mid-Swedish primary schools. Information on SIAQ and the psychosocial work environment was measured by a self-administered questionnaire, using analogue rating scales. Indoor exposures were quantified by hygienic measurements. Perception of high room temperature was related to a poor climate of cooperation, fleecy wall materials, and the concentration of volatile organic compounds (VOC), including xylene, limonene, and butanols. Perception of air dry-ness was related to atopy, work stress, poor climate of cooperation, high room temperature, low air humidity, and high VOC concentration, including, limonene, and n-alkanes. Perception of dusty air was related to work stress, the role of schoolteacher, and exposure to 2-ethyl-1-hexanol. No relations were found between SIAQ and CO2, building age, or respirable dust. To achieve a good SIAQ, room temperature should be kept at a maximum of 22°C, and exposure to VOCs and fleecy materials should be minimized. Finally, a sound psychosocial work climate is essential for the perception of a good physical indoor climate.  相似文献   

19.
W. Dong  L. Pan  H. Li  M. R. Miller  M. Loh  S. Wu  J. Xu  X. Yang  J. Shan  Y. Chen  F. Deng  X. Guo 《Indoor air》2018,28(3):373-382
Associations between size‐fractionated indoor particulate matter (PM) and black carbon (BC) and heart rate variability (HRV) and heart rate (HR) in elderly women remain unclear. Twenty‐nine healthy elderly women were measured for 24‐hour HRV/HR indices. Real‐time size‐fractionated indoor PM and BC were monitored on the same day and on the preceding day. Mixed‐effects models were applied to investigate the associations between pollutants and HRV/HR indices. Increases in size‐fractionated indoor PM were significantly associated with declines in power in the high‐frequency band (HF), power in the low‐frequency band (LF), and standard deviation of all NN intervals (SDNN). The largest decline in HF was 19% at 5‐minute moving average for an interquartile range (IQR) increase (24 μg/m3) in PM0.5. The results showed that smaller particles could lead to greater reductions in HRV indices. The reported associations were modified by body mass index (BMI): Declines in HF at 5‐minute average for an IQR increase in PM0.5 were 34.5% and 1.0% for overweight (BMI ≥25 kg/m2) and normal‐weight (BMI <25 kg/m2) participants, respectively. Moreover, negative associations between BC and HRV indices were found to be significant in overweight participants. Increases in size‐fractionated indoor PM and BC were associated with compromised cardiac autonomic function in healthy elderly women, especially overweight ones.  相似文献   

20.
Electret filters are widely used in HVAC systems to decrease particulate matter in indoor environments. The previous standard in Europe for testing air filters for general ventilation was EN 779. In July 2018, it was replaced by the new international standard ISO 16890. One major change is the discharging process: It is now performed by treating the filters with saturated isopropyl alcohol (IPA) vapor. The process is intended to simulate a worst-case scenario of the filtration efficiency due to the reduction of the electret effect. These minimal efficiencies are a principal part of the filter classification. Therefore, two round robin tests with different filter classes (F9 and F7 according to EN 779) and up to eleven participants were carried out to evaluate the new test method by comparing the filtration efficiencies and pressure drops before and after the IPA treatment. Pressure drop measurements showed no mechanical altering of the material due to the discharging process. The calculated filter classes had a maximum deviation of 5%. Even with different equipment, the results indicate that the new ISO 16890 seems to be a viable test standard and a decent replacement for previous national standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号