首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分子组装及其应用   总被引:1,自引:0,他引:1  
在对分子组装及其应用于功能纳米结构或器件的研究进展进行了较系统分析的同时,介绍了东南大学纳米科学与技术研究中心在这方面所开展的一些工作,包括基于微细加工结合分子组装制备纳米间隙电极,金属纳米微粒的二维有序排列,单电子原型器件的研制与仿真,以及采用分子组装进行核壳结构复合材料制备等方面的研究.  相似文献   

2.
在对分子组装及其应用于功能纳米结构或器件的研究进展进行了较系统分析的同时,介绍了东南大学纳米科学与技术研究中心在这方面所开展的一些工作,包括基于微细加工结合分子组装制备纳米间隙电极,金属纳米微粒的二维有序排列,单电子原型器件的研制与仿真,以及采用分子组装进行核壳结构复合材料制备等方面的研究.  相似文献   

3.
纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。纳米电子学的最终目标是将集成电路进一步减小,研制出由单原子或单分子构成的在室温能使用的各种器件。  相似文献   

4.
自组装技术是制备纳米结构的几种为数不多的方法之一。本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述,主要包括以下几个方面:自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体。  相似文献   

5.
自组装技术是制备纳米结构的几种为数不多的方法之一。本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述 ,主要包括以下几个方面 :自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体  相似文献   

6.
自组装技术是制备纳米结构的几种为数不多的方法之一.本文对最近几年自组装技术在纳米科技领域中的一些重大突破和成果进行较为系统地综述,主要包括以下几个方面:自组装单层膜、纳米尺度的表面改性、超分子材料、分子电子学与光子晶体.  相似文献   

7.
介绍了近十几年来典型的氢键组装的超分子液晶材料的组装方法和分子结构,对比其光电性能和自组装特点,并对其在光电器件方面的应用进行展望。这类材料依据氢键组装的方式和分子结构主要分为两大类:结构封闭型和结构开放型。与后者相比,前者具有易于结构修饰和易于精确调控性能的特点。但两者内部的分子结构变化时,组装的超分子液晶材料的性能均受到显著影响。分子间氢键作用组装的超分子液晶材料具有高度有序性和可精确调控性,因此作为新型材料在有机光电器件和纳米器件等领域具有广阔的应用前景。  相似文献   

8.
采用阳极氧化法制备了多孔硅(PS),通过真空沉积在纳米孔中组装了有机发光小分子八羟基喹啉铝(Alq3),制作了有机/无机复合电致发光器件,并与单层的Alq3电致发光器件相比较,观察到复合体系的电致发光蓝移现象,这种蓝移现象与纳米孔对有机分子聚集程度的限制有关。  相似文献   

9.
纳米分子电子器件是未来电子器件发展的重要方向。对几种典型的纳米分子电子器件,如纳米分子开关、纳米分子整流器、纳米分子晶体管、纳米分子电磁器件和纳米分子电光器件的工作原理、应用前景等方面进行了介绍,同时分析了各自的优势与问题所在。这一领域所遇到的主要挑战问题在于器件的可靠性与生产的高成本。目前纳米分子电子器件的发展趋势和研究重点是通过对器件原理的深入研究以及制备方法的不断探索,找到提高器件可靠性的方法以及解决降低成本和适应市场化的问题。  相似文献   

10.
碳纳米管的制备、修饰及其应用   总被引:2,自引:0,他引:2  
简要介绍了碳纳米管的制备及其纯化技术,以及近年来碳纳米管修饰、管内填充方面的研究,并概述了碳纳米管在复合材料、发光材料、纳米器件方面的应用及其在固体基片上的定向组装。  相似文献   

11.
自组装模板法是一种制作大面积图案化纳米结构的低成本方法.与聚苯乙烯微球自组装模板相比,双通阳极氧化铝(AAO)自组装模板具有结构可调、绝缘性好、稳定性好等优点,被广泛应用于制备大面积图案化纳米结构以及改善传统光电器件的性能.首先介绍了双通AAO模板的制备原理及方法,接着总结了双通AAO模板辅助制备纳米颗粒、纳米线/棒、...  相似文献   

12.
摘要Ι 采用阳极氧化法制备了多孔硅Ο玲Π , 通过真空沉积在纳米孔中组装了有机发光小分子八经基哇琳铝Ο月龟Π , 制作了有机Κ 无机复合电致发光器件, 并与单层的月币电致发光器件相比较, 观察到复合体系的电致发光蓝移现 象, 这种蓝移现象与纳米孔对有机分子聚集程度的限制有关。  相似文献   

13.
石墨烯的高晶体质量、高电导率、单层结构以及与有机半导体的良好兼容性使其成为纳米器件和分子器件的理想电极材料,纳米间隙电极对是构筑纳米器件的基础,发展了两种制备石墨烯纳米间隙电极对的方法——纳米线和金丝交替掩膜法以及原子力针尖裁剪法,其过程简单,制备的石墨烯间隙为100~200 nm.石墨烯纳米间隙电极对是制备纳米器件、...  相似文献   

14.
采用自组装方法,在(APS)分子修饰后的玻璃衬底 表面,制备得 到Au纳米结构衬底。采取激光光谱学方法,研究所制备衬底对沉积其表面的Rhodamine 6G(R h6G) 分子的荧光辐射增强效应。实验发现,利用自组装方法制备的Au纳米结构衬底具有较强的荧 光增 强特性。理论分析表明,制备的Au纳米结构在外光场激发下,所形成的强局部电磁场分布 能够有效提升探针分子的电子跃迁速率,从而实现增强荧光效应。  相似文献   

15.
基于纳米尺寸的分子电子信息存储研究   总被引:3,自引:1,他引:2  
以有机分子为基础的"纳米存储"是一种新型的数据存储系统,具有替代目前广泛应用的半导体存储器件的趋势。目前,有两种"分子"被潜在地应用于"纳米存储",一种是分子电子器件,包括分子导线、分子整流器、分子开关以及分子晶体管;另外一种应用了纳米结构的材料,如纳米管、纳米导线以及纳米粒子等。本文以分子电子器件的制备和构筑单元的设计为视角,根据分子结构、装置类型、终端电极的数目以及分子介质的状态对分子电子器件进行了分类,同时也对分子结的制备、特征、电荷转移机制以及三终端分子器件、树状化合物分子尺寸纳米电荷存储的发展进行了探讨,并对纳米信息存储存在的问题及发展方向进行了展望。  相似文献   

16.
白正元  张龙  王康鹏 《红外与激光工程》2017,46(5):534001-0534001(6)
有序贵金属纳米结构由于其本身所特有的光学响应及灵活调控能力,在微纳光电子材料与器件研究领域得到了广泛应用。在众多相关研究中,如何实现金(Au)纳米周期结构的大面积快速制备是人们关心的重要问题之一。采用纳米球自组装刻蚀方法,在大孔周期结构模板内部成功制备了新型二维Au纳米阵列,并有效避免了杂散Au纳米颗粒的产生。通过进一步的工艺优化和参量控制,实现了Au纳米颗粒尺寸的灵活调控,并探讨了其结构形成的物理机理。光学测试研究结果揭示了二维Au纳米阵列的表面等离子体吸收与散射响应,并证明其在近红外飞秒脉冲激励下具有显著的双光子吸收(饱和)效应。该研究结果在太阳能电池,光开关及材料微纳制备等领域具有潜在应用。  相似文献   

17.
综述了国内外纳米间隙电极的制备方法,其中主要包括扫描隧道显微镜法、Hg滴法、机械断裂法、微加工法、电迁移法、电化学法等,对每种方法的制备过程及原理进行了较详细的介绍;对每种纳米间隙电极在分子电子学方面的应用,特别是对利用纳米间隙电极测定单分子的I-V性质、制作分子整流器和分子晶体管等工作做了简单介绍。突出了纳米间隙电极在分子器件研究中的重要作用;最后讨论了分子电子学所面临的一些问题并对该领域的发展方向作出了展望。  相似文献   

18.
介绍了氧化锌(ZnO)纳米线(NW)的性质,总结了ZnONW的气相法、液相法、模板生长法、自组装法等制备原理和方法,详细阐述了ZnONW基光电、压敏和气敏等纳米器件的研究现状,如在发光二极管、太阳能电池、紫外激光器、纳米发电机、气敏传感器的应用现状。分析了目前ZnONW器件实用化进程中难以解决的p型掺杂等方面的问题及其在荧光探针、稀磁半导体材料和自旋电子器件等方面的研究和应用趋势,指出今后的研究及发展方向主要将集中在ZnO缺陷形成及作用机理的研究,ZnONW荧光探针的制备及其在生物医学上的应用,不同结构的ZnO超晶格和多量子阱的制备及其在自旋电子器件中的应用。  相似文献   

19.
提供了一种硅纳米墙结构器件的背面电极接触改善方法。通过利用超声的方法修饰金属催化法制备的硅纳米墙结构,并制备了AZO/硅纳米墙异质结光电器件。研究发现超声波可以对金属催化法制备的纳米硅墙进行单面修饰,与未经超声修饰的样品制备的器件相比,超声修饰能够改善硅纳米墙器件的背面电极欧姆接触,2 min的超声修饰可以将器件的串联电阻从587 Ω下降到082 Ω,填充因子提高86%,光电转换效率提高762%,提高了光电器件的载流子收集效率。  相似文献   

20.
采用自组装方法,在3-Aminopropyltrimethoxysilane(APS)分子修饰后的玻璃衬底表面,获得了二维Ag纳米结构衬底。在波长为532nm激光激发下,研究了沉积在衬底表面的Rhodamine 6G(Rh6G)分子的拉曼光谱特性。结果表明,制备的二维Ag纳米结构衬底具有强的拉曼增强特性,增强因子可以达到107倍。这说明,在外光场作用下,制备的Ag纳米结构衬底表面能够形成的强局部电磁场分布,可以有效提升探针分子的光谱辐射效率,从而获得高增强拉曼散射。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号