首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 71 毫秒
1.
针对模糊聚类算法对初始聚类中心敏感、容易陷入局部最优的问题,采用并行小生境粒子群优化算法对模糊聚类算法进行改进.通过山谷函数对小生境进行识别以形成互斥的多个子群,采用惩罚函数实现多子群并行搜索过程中的信息共享机制,引入混合聚类有效性函数获取最佳聚类数.仿真结果表明,该算法能提高模糊聚类算法的搜索效率以及分类精度.  相似文献   

2.
刘梦娇 《电子科技》2016,29(11):107
针对传统模糊C-均值聚类算法对复杂的医学、遥感图像难以获得满意分割效果问题,将图像模糊C-均值聚类引入图像分割问题研究中,提出了基于直方图的图像模糊聚类快速分割算法。将越南学者Le提出的分布式图像模糊聚类算法目标函数进行简化,得到图像模糊聚类算法目标函数;采用拉格朗日乘子法获取其迭代求解所对应的隶属度、中立度、拒分度和聚类中心表达式,设计图像模糊聚类算法并对其收敛性进行了证明。通过复杂医学和遥感图像的分割测试结果表明,新的分割算法相比现有的模糊C-均值聚类分割算法和直觉模糊C-均值聚类分割算法具有更好的分割性能。  相似文献   

3.
国画图像分割是图像理解、计算机视觉等研究领域的重要内容。文章根据国画颜色有限性的特点以及视觉的颜色聚类特性,提出了一种基于模糊C均值聚类(FCM)的国画图像分割算法,实现对国画图像的分割。算法根据中国国画颜色以墨色为主,以墨破色的特点,通过选取国画图像每个像素点的灰度颜色特征,计算各像素点到各个聚类中心之间的欧式距离,并利用模糊C均值聚类的方法更新聚类中心,聚类结束后得到分类后的图像;再利用分类图像标识出分割图像,从而实现国画图像的分割。通过实验得出,算法有效地保证了各区域图像的完整,提高了分割的精确度。  相似文献   

4.
基于超像素和模糊聚类的医学超声图像分割算法   总被引:2,自引:0,他引:2  
陈放  杨艳 《半导体光电》2016,(1):146-150
图像分割在医学超声图像的定量、定性分析中均扮演着十分重要的作用,并直接影响到后续的分析、处理工作.针对医学超声图像对比度低和噪声强的特点,提出了一种将超像素和模糊聚类技术相结合的图像分割方法.该方法利用简单线性迭代聚类算法产生多个超像素子区域,通过比较各个子区域间特征向量的相似性,利用模糊C均值(FCM)聚类技术对这些过分割区域进行合并,实现超声图像目标区域的有效分割.和传统的基于单像素的FCM聚类算法相比,该方法具有较强的鲁棒性,有效提高了目标区域的分割精度和分割效率,取得了较好的分割效果.  相似文献   

5.
基于改进的模糊C均值聚类图像分割新算法   总被引:8,自引:5,他引:8  
模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但是传统的FCM算法没有考虑像素的空间信息,因而对噪声十分敏感。为了克服上述问题,提出了一种新的基于改进的FCM图像分割算法。该方法将空间的信息融入到标准的FCM算法中,通过引入表征邻域像素对中心像素作用的先验概率来重新确定当前像素的模糊隶属度值,该概率在算法执行过程中根据模糊隶属度值自动地予以确定。算法中使用基于统计直方图的快速FCM算法进行初始化,收敛速度大大提高。人造图像和实际图像的实验结果表明该方法的有效性和对噪声具有较强的鲁棒性。  相似文献   

6.
基于形态学操作和模糊聚类技术的超声图像分割   总被引:1,自引:1,他引:1       下载免费PDF全文
针对医学超声图像对比度低和噪声强的特点,提出了多尺度形态学操作和模糊聚类技术相结合的图像分割方法.该方法利用多尺度形态变换提取图像的结构特征,通过对不同尺度结构特征数量的统计分析,估计图像中噪声尺度大小,并修改不同尺度结构特征的强度,从而实现对图像局部对比度的增强和噪声抑制.同时,使用新的模糊C均值聚类算法对增强后图像进行分割,从而进一步地减少图像中噪声对分割的影响,完成超声图像的有效分割.实验结果表明该方法对超声图像的分割是有效的.  相似文献   

7.
张磊  董惠  杨润玲 《现代电子技术》2009,32(16):120-122
图像分割是图像处理和图像分析的关键步骤,在图像工程中占据重要地位.模糊C均值聚类(FCM)算法是一种经典的模糊聚类分析方法,但其算法初始聚类原型是随机选取的,从而造成算法性能强烈地依赖聚类原型的初始化,将遗传算法强大的通用性应用于模糊聚类算法,对模糊聚类中心进行编码,然后依据FCM算法的目标函数建立适应度函数,选择适当的交叉率和变异率,最终实现基于模糊聚类遗传算法的图像分割.采用这种方法一方面能较好地解决模糊聚类对初始化敏感的问题,又能在一定程度上提高了分割速度.实验结果表明,该算法具有良好的分割效果.  相似文献   

8.
提出了一种新的基于二型模糊可能性聚类的红外图像分割算法。针对受概率约束的模糊聚类算法和不受概率约束的可能性聚类算法在红外图像分割时存在的问题,采用二型模糊系统融合两种分割算法的隶属度函数,将隶属度函数看作一个区间型分布,而不是单独采用两种算法输出的确定模糊值。这种处理方式不但能有效抑制噪声及野值,而且能有效防止红外图像的过分割。实验仿真结果表明,该算法较传统聚类算法能获得更好的分割效果,可有效抑制噪声对目标区域分割的干扰。  相似文献   

9.
像素间的上下文相关信息对图像分割算法的抗噪性和准确性具有重要意义,现有的模糊C均值(FCM)聚类算法对此缺乏充分考虑.该文基于对空间上下文的可靠性度量,提出一种模糊C均值聚类算法(RSFCM)应用于图像分割:通过对空间上下文有效建模来提高聚类算法的抗噪声干扰性能,并研究了一种新的可靠性模糊度量指标,使聚类算法能更好地平衡细节保留和去噪,从而获得更加准确的分割结果.实验选取人工合成图像、交通标志图像和遥感图像3类数据测试聚类算法性能,结果表明,RSFCM在图像分割过程中能有效地抑制椒盐噪声和高斯噪声引起的类内异构及类间同构问题,能提高图像的像素可分性,并有效地保留了图像的边缘细节.  相似文献   

10.
模糊核聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,已广泛应用于图像分割领域,但其算法对初值敏感,很大程度上依赖初始聚类中心的选择,并且容易收敛于局部极小值,用于图像分割时,隶属度的计算只考虑了图像中当前的像素探值,而未考虑邻域像素探间的相互关系,故对分割含有噪声图像不理想。故提出了一种改进的模糊核聚类图像分割算法,先通过数据约简,不损失数据聚类结构的前提下对数据进行挖掘,然后在模糊核聚类算法中引入特性核函数,将约简后的数据映射到高维非线性特征空间进行划分,最后再利用表征邻域像素的参数来修正当前空间像素的隶属度。实验结果表明,提出的算法较好地解决了模糊核聚类算法在局部极值处收敛和在迭代过程中出现停滞等问题,最终得到最佳全局聚类,迭代次数降低明显,并具有高鲁棒性、对噪声不敏感的特点。  相似文献   

11.
图像分割是图像处理中是一个重要问题.在FCM方法的基础上,对其参数m和算法的运行速度进行改进,实验结果表明,该改进在优化算法的速度和分割效果上都有显著的提高.  相似文献   

12.
为了同时处理影像分割问题中的随机性与模糊性,提出了一种多尺度(MR,multi-resolu-tion,马尔可夫随机场(MRF,markov random field)模型下的模糊C均值(FCM,fuzzy C-means)聚类分割算法(MR-MRF-FCM)。利用FCM算法能够处理影像模糊性的优点、MRF模型描述空间关系的长处以及小波的多尺度分析的优点,先对影像进行多尺度小波分解,并对小波系数建立MRF,进而用MR-MRF中的条件概率矩阵代替FCM算法的隶属度矩阵。实验结果从视觉效果和定量指标两方面表明,本文方法优于经典的MRF、多尺度MRF、FCM和核FCM等方法。  相似文献   

13.
基于模糊C均值聚类与空间信息相结合的图像分割新算法   总被引:2,自引:0,他引:2  
针对传统的模糊C均值聚类(FCM)图像分割方法未考虑图像的空间信息,对噪声十分敏感的问题,本文提出了一种结合空间信息的模糊C均值聚类分割新算法;该算法将图像的二维直方图引入传统的模糊C均值聚类算法中,并对隶属函数做了改进;依据平方误差和最小准则,来确定模糊分类矩阵及聚类中心;最后,依据最大隶属度原则,划分图像像素的类别归属,以改善传统的PCM算法的分割质量。实验结果表明,该算法显示了较好的分割效果和较强的抗噪性能。  相似文献   

14.
王原丽  李艳红 《信息技术》2006,30(11):71-74
模糊C-均值(FCM)聚类算法是一种基于像素分类的图像分割方法,在分割的过程中,仅仅利用了像素点的灰度信息,但在灰度密度丰富变化和图像的对比度不明显的情况下,物体和背景的分布将相互重叠而密不可分,往往得不到满意的分割效果。为了解决上述问题,现提出了一种基于多分辨率图像锥的模糊C-均值聚类图像分割算法。该方法利用多分辨技术产生多分辨率图像锥,将图像从空间信息引入,考虑图像的局部特性,使分割算法局限于图像的子图像中,物体和背景比单纯运用FCM更容易区分,且算法稳定性高,速度快。  相似文献   

15.
Due to the sensitivity of the traditional intuitionistic fuzzy c-means (IFCM) clustering algorithm to the clustering center in image segmentation,which resulted in the low clustering precision,poor retention of details,and large time complexity,an intuitionistic fuzzy c-means clustering algorithm was proposed based on spatial distribution information suitable for infrared image segmentation of power equipment.The non-target objects with high intensity and the non-uniformity of image intensity in the infrared image had strong interference to the image segmentation,which could be effectively suppressed by the proposed algorithm.Firstly,the Gaussian model was introduced into the global spatial distribution information of power equipment to improve the IFCM algorithm.Secondly,the membership function was optimized by local spatial operator to solve the problem of edge blur and image intensity inhomogeneity.The experiments conducted on Terravic motion IR database and the data set containing 300 infrared images of power equipment show that,the relative region error rate is about 10% and is less affected by the change of fuzzy factor m.The effectiveness and applicability of the proposed algorithm are superior to other comparison algorithms.  相似文献   

16.
模糊C均值聚类(FCM.fuzzy c-means)图像分割方法,对初值选取较敏感,并且需要事先确定聚类数目.为此,提出了一种基于变长度微粒群算法(PSO,particle swarm optimization)优化PBMF模糊聚类的自适应图像分割方法.PBMF指标函数考虑了聚类数目和聚类中心,通过设计变长度PSO算法来实现PBMF指标函数的优化过程,并利用统计直方图将图像从像素窄间映射到灰度直方图特征空间,从而快速地获得图像的最佳聚类数日和聚类中心.对遥感图像的分割实验表明,该自适应分割策略具有全局搜索图像最佳聚类数月和聚类中心的能力,以及较强的抗噪能力.  相似文献   

17.
为了提高医学图像分割性能,针对传统模糊聚类算法存在的缺陷,提出了一种改进模糊均值聚类算法的医学图像分割方法。首先采用粒子群算法选择模糊均值聚类算法的聚类中心,然后利用空间邻域信息设定聚类样本空间,最后采用具体的医学图像数据进行仿真实验,测试其有效性。仿真结果表明,相对于传统模糊聚类算法,本文算法不仅提高了医学图像分割精度,而且提高了医学图像分割效率。  相似文献   

18.
宋长新 《激光与红外》2012,42(11):1306-1310
聚类作为一种重要的图像分割方法得到了大量研究,提出了一种新的结合稀疏编码的红外图像聚类分割算法,扩展了传统的基于K-means聚类的图像分割方法。结合稀疏编码的聚类算法能有效融合图像的局部信息,而且易于利用像素之间的内在相关性,但是对于分割会出现过分割和像素难以归类的问题。为此,在字典的学习过程中,将原子的聚类算法引入其中,有助于缩减字典中原子所属类别的数目防止出现过分割;同时将稀疏编码系数同原子对聚类中心的隶属程度相结合来判断像素所属的类别。这种处理方式能更好地实现利用像素的内在相关性进行聚类分割,并在其中自然引入了局部空间信息,达到更好分离目标区域和背景区域的目的。实验结果表明,结合稀疏编码的K-means聚类分割算法能更好的实现复杂背景下红外图像重要区域的准确分割提取。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号