共查询到20条相似文献,搜索用时 15 毫秒
1.
求解函数优化问题的一种高效混合演化算法 总被引:2,自引:2,他引:2
在郭涛算法的基础上设计出了一种求解函数优化问题的高效混合演化算法。新算法的主要特点有两个:一是引入演化策略中的高斯变异算子,二是引入自适应搜索子空间。高斯变异算子对群体作正态分布微调,防止早熟;引入自适应搜索子空间使群体在演化至接近全局最优解时能自动缩小搜索范围,从而达到加速收敛的目的。测试函数表明,该算法正确高效,求解精度极高,指正了文献[3]中的错误,所求函数全局最小值优于文献[3]记录的最好结果。 相似文献
2.
3.
4.
高维数据流子空间聚类发现及维护算法 总被引:3,自引:2,他引:3
近年来由于数据流应用的大量涌现,基于数据流模型的数据挖掘算法研究已成为重要的应用前沿课题.提出一种基于Hoeffding界的高维数据流的子空间聚类发现及维护算法--SHStream.算法将数据流分段(分段长度由Hoeffding界确定),在数据分段上进行子空间聚类,通过迭代逐步得到满足聚类精度要求的聚类结果,同时针对数据流的动态性,算法对聚类结果进行调整和维护.算法可以有效地处理高雏数据流和对任意形状分布数据的聚类问题.基于真实数据集与仿真数据集的实验表明,算法具有良好的适用性和有效性. 相似文献
5.
6.
中医四诊分析是基于四诊信息进行中医证候分类研究的重要内容,构建有效的中医四诊分析模型可以更好地挖掘中医证候间的关联关系,从而为中医临床提供决策支持。本文通过对子空间聚类CLIQUE算法的分析,结合四诊信息的数据特征,提出一种基于限定空间搜索策略的改进CLIQUE算法(ChM-CLIQUE)。通过优化CLIQUE算法的搜索策略,以稠密单元中网格密度最大的单元为中心进行深度优先搜索生成聚类簇,提高算法的性能,同时基于聚类簇中样本高斯分布的特性引入网格自适应密度,增强聚类边界的识别精度。在中医临床采集的数据集上进行多组对比实验,实验结果表明本文算法的轮廓系数较CLIQUE算法有显著性的提高。 相似文献
7.
8.
Clustering high dimensional data has become a challenge in data mining due to the curse of dimensionality. To solve this problem,
subspace clustering has been defined as an extension of traditional clustering that seeks to find clusters in subspaces spanned
by different combinations of dimensions within a dataset. This paper presents a new subspace clustering algorithm that calculates
the local feature weights automatically in an EM-based clustering process. In the algorithm, the features are locally weighted
by using a new unsupervised weighting method, as a means to minimize a proposed clustering criterion that takes into account
both the average intra-clusters compactness and the average inter-clusters separation for subspace clustering. For the purposes
of capturing accurate subspace information, an additional outlier detection process is presented to identify the possible
local outliers of subspace clusters, and is embedded between the E-step and M-step of the algorithm. The method has been evaluated
in clustering real-world gene expression data and high dimensional artificial data with outliers, and the experimental results
have shown its effectiveness. 相似文献
9.
聚类分析是数据挖掘中的一个重要研究课题。在许多实际应用中,聚类分析的数据往往具有很高的维度,例如文档数据、基因微阵列等数据可以达到上千维,而在高维数据空间中,数据的分布较为稀疏。受这些因素的影响,许多对低维数据有效的经典聚类算法对高维数据聚类常常失效。针对这类问题,本文提出了一种基于遗传算法的高维数据聚类新方法。该方法利用遗传算法的全局搜索能力对特征空间进行搜索,以找出有效的聚类特征子空间。同时,为了考察特征维在子空间聚类中的特征,本文设计出一种基于特征维对子空间聚类贡献率的适应度函数。人工数据、真实数据的实验结果以及与k-means算法的对比实验证明了该方法的可行性和有效性。 相似文献
10.
数据挖掘中变量聚类方法的应用研究 总被引:5,自引:0,他引:5
讨论了变量聚类方法中相同类型变量相似性测度方法,首次提出一种关于混合变量间相似性测度的方法。并将基于变量的聚类分析和模糊聚类结合起来,为解决数据挖掘中基于变量聚类问题提供了有效的分析工具。最后给出一个应用实例。 相似文献
11.
An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering 总被引:2,自引:0,他引:2
Taher Niknam Elahe Taherian FardNarges Pourjafarian Alireza Rousta 《Engineering Applications of Artificial Intelligence》2011,24(2):306-317
Clustering techniques have received attention in many fields of study such as engineering, medicine, biology and data mining. The aim of clustering is to collect data points. The K-means algorithm is one of the most common techniques used for clustering. However, the results of K-means depend on the initial state and converge to local optima. In order to overcome local optima obstacles, a lot of studies have been done in clustering. This paper presents an efficient hybrid evolutionary optimization algorithm based on combining Modify Imperialist Competitive Algorithm (MICA) and K-means (K), which is called K-MICA, for optimum clustering N objects into K clusters. The new Hybrid K-ICA algorithm is tested on several data sets and its performance is compared with those of MICA, ACO, PSO, Simulated Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS), Honey Bee Mating Optimization (HBMO) and K-means. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handling data clustering. 相似文献
12.
针对传统K-均值聚类算法需要事先确定聚类数,以及对初始质心的选择具有敏感性,从而容易陷入局部极值点的缺点,使用了一种基于可变染色体编码长度的遗传算法对传统K-均值聚类进行改进.该算法可以在事先不确定K值的情况下,通过多次的选择、交叉.变异的遗传操作,最终得到最优的聚类数,以及最优的初始质心集.通过Reuters数据集的实验结果表明,基于该算法的聚类划分结果明显优于传统K-均值聚类算法,并且好过基于固定染色体编码长度遗传算法的K-均值聚类算法. 相似文献
13.
预测子空间聚类PSC算法由于建立在PCA模型下,无法鲁棒地进行主元分析,导致在面对带有强噪声的数据时,聚类性能受到严重影响。为了提高PSC算法对噪声的鲁棒性,利用近年来受到广泛关注的RPCA分解技术得到数据的低秩结构,鲁棒地提取子空间,具体地,通过将RPCA模型融入PSC算法,提出了一种基于RPCA的预测子空间聚类算法。该算法在RPCA模型下检测强影响点,不但可以有效地进行变量选择和模型选择,而且更重要的是改善了PSC算法在噪声环境下的聚类性能。在真实基因表达数据集上的实验结果表明,改进后的算法较之经典的PSC算法无论在无噪声或加噪声环境下都表现出一定聚类优势及良好的鲁棒性。 相似文献
14.
现有的软子空间聚类算法在分割MR图像时易受随机噪声的影响,而且算法因依赖于初始聚类中心的选择而容易陷入局部最优,导致分割效果不理想.针对这一问题,提出一种基于烟花算法的软子空间MR图像聚类算法.算法首先设计一个结合界约束与噪声聚类的目标函数,弥补现有算法对噪声数据敏感的缺陷,并提出一种隶属度计算方法,快速、准确地寻找簇类所在子空间;然后,在聚类过程中引入自适应烟花算法,有效地平衡局部与全局搜索,弥补现有算法容易陷入局部最优的不足.EWKM,FWKM,FSC,LAC算法在UCI数据集、人工合成图像、Berkeley图像数据集以及临床乳腺MR图像、脑部MR图像上的聚类结果表明,所提出的算法不仅在UCI数据集上能够取得较好的结果,而且对图像聚类也具有较好的抗噪性能,尤其是对MR图像的聚类具有较高的精度和鲁棒性,能够较为有效地实现MR图像的分割. 相似文献
15.
针对密度峰值聚类(CFSFDP)算法处理多密度峰值数据集时,人工选择聚类中心易造成簇的误划分问题,提出一种结合遗传k均值改进的密度峰值聚类算法。在CFSFDP求得的可能簇中心中,利用基于可变染色体长度编码的遗传k均值的全局搜索能力自动搜索出最优聚类中心,同时自适应确定遗传k均值的交叉概率,避免早熟问题的出现。在UCI数据集上的实验结果表明,改进算法具有较好的聚类质量和较少的迭代次数,验证了所提算法的可行性和有效性。 相似文献
16.
讨论翻转距离星树问题,证明实例中有向符号序列个数为9时,翻转距离星树问题是NP-难解问题,并给出了一个该问题的多项式时间近似算法. 相似文献
17.
18.
19.
20.
提出利用类结构驱动的群体进化计算方法——类搜索算法(CSA).CSA在个体间构造簇类形态的虚拟连接关系,并通过对类组织的结构和类搜索过程进行动态调节来优化模拟进化系统的计算状态,提高群体的搜索效率.介绍了CSA的基本模型,并基于CSA融合进化算子与差分计算机制设计出数值优化算法CSA/DE.对多个典型高纬函数和复杂混合函数的仿真实验结果说明,CSA/DE是一种对高纬连续问题高效、稳定的搜索优化方法.该工作一方面验证了CSA的可行性和有效性;另一方面则显示:基于类搜索模型可有效融合异构且具有不同计算特性的搜索机制,形成对待求解问题更具针对性且协调性更佳的搜索计算方法.这为高性能优化算法的设计提供了一条新的途径. 相似文献