This work presents an approach to support the visual analysis of parameter dependencies of time-series segmentation. The goal is to help analysts understand which parameters have high influence and which segmentation properties are highly sensitive to parameter changes. Our approach first derives features from the segmentation output and then calculates correlations between the features and the parameters, more precisely, in parameter subranges to capture global and local dependencies. Dedicated overviews visualize the correlations to help users understand parameter impact and recognize distinct regions of influence in the parameter space. A detailed inspection of the segmentations is supported by means of visually emphasizing parameter ranges and segments participating in a dependency. This involves linking and highlighting, and also a special sorting mechanism that adjusts the visualization dynamically as users interactively explore individual dependencies. The approach is applied in the context of segmenting time series for activity recognition. Informal feedback from a domain expert suggests that our approach is a useful addition to the analyst's toolbox for time-series segmentation. 相似文献
This paper presents a short-contact multitouch vocabulary for interacting with scatterplot matrices (SPLOMs) on wall-sized displays. Fling-based gestures overcome central interaction challenges of such large displays by avoiding long swipes on the typically blunt surfaces, frequent physical navigation by walking for accessing screen areas beyond arm's reach in the horizontal direction and uncomfortable postures for accessing screen areas in the vertical direction. Furthermore, we make use of the display's high resolution and large size by supporting the efficient specification of two-tiered focus + context regions which are consistently propagated across the SPLOM. These techniques are complemented by axis-centered and lasso-based selection techniques for specifying subsets of the data. An expert review as well as a user study confirmed the potential and general usability of our seamlessly integrated multitouch interaction techniques for SPLOMs on large vertical displays. 相似文献
When individuals encounter new information (data), that information is incorporated with their existing beliefs (prior) to form a new belief (posterior) in a process referred to as belief updating. While most studies on rational belief updating in visual data analysis elicit beliefs immediately after data is shown, we posit that there may be critical movement in an individual's beliefs when elicited immediately after data is shown v. after a temporal delay (e.g., due to forgetfulness or weak incorporation of the data). Our paper investigates the hypothesis that posterior beliefs elicited after a time interval will “decay” back towards the prior beliefs compared to the posterior beliefs elicited immediately after new data is presented. In this study, we recruit 101 participants to complete three tasks where beliefs are elicited immediately after seeing new data and again after a brief distractor task. We conduct (1) a quantitative analysis of the results to understand if there are any systematic differences in beliefs elicited immediately after seeing new data or after a distractor task and (2) a qualitative analysis of participants' reflections on the reasons for their belief update. While we find no statistically significant global trends across the participants beliefs elicited immediately v. after the delay, the qualitative analysis provides rich insight into the reasons for an individual's belief movement across 9 prototypical scenarios, which includes (i) decay of beliefs as a result of either forgetting the information shown or strongly held prior beliefs, (ii) strengthening of confidence in updated beliefs by positively integrating the new data and (iii) maintaining a consistently updated belief over time, among others. These results can guide subsequent experiments to disambiguate when and by what mechanism new data is truly incorporated into one's belief system. 相似文献
Visualizations have played a crucial role in helping quantum computing users explore quantum states in various quantum computing applications. Among them, Bloch Sphere is the widely-used visualization for showing quantum states, which leverages angles to represent quantum amplitudes. However, it cannot support the visualization of quantum entanglement and superposition, the two essential properties of quantum computing. To address this issue, we propose VENUS, a novel visualization for quantum state representation. By explicitly correlating 2D geometric shapes based on the math foundation of quantum computing characteristics, VENUS effectively represents quantum amplitudes of both the single qubit and two qubits for quantum entanglement. Also, we use multiple coordinated semicircles to naturally encode probability distribution, making the quantum superposition intuitive to analyze. We conducted two well-designed case studies and an in-depth expert interview to evaluate the usefulness and effectiveness of VENUS. The result shows that VENUS can effectively facilitate the exploration of quantum states for the single qubit and two qubits. 相似文献
We use k-order Voronoi diagrams to assess the stability of k-neighbourhoods in ensembles of 2D point sets, and apply it to analyse the robustness of a dimensionality reduction technique to variations in its input configurations. To measure the stability of k-neighbourhoods over the ensemble, we use cells in the k-order Voronoi diagrams, and consider the smallest coverings of corresponding points in all point sets to identify coherent point subsets with similar neighbourhood relations. We further introduce a pairwise similarity measure for point sets, which is used to select a subset of representative ensemble members via the PageRank algorithm as an indicator of an individual member's value. The stability information is embedded into the k-order Voronoi diagrams of the representative ensemble members to emphasize coherent point subsets and simultaneously indicate how stable they lie together in all point sets. We use the proposed technique for visualizing the robustness of t-distributed stochastic neighbour embedding and multi-dimensional scaling applied to high-dimensional data in neural network layers and multi-parameter cloud simulations. 相似文献
Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term “embedding” when describing the computational approach. Within this context, embeddings are usually (relatively) low-dimensional, distributed representations of various data types (such as texts or graphs), and since they have proven to be extremely useful for a variety of data analysis tasks across various disciplines and fields, they have become widely used. Existing visualization approaches aim to either support exploration and interpretation of the embedding space through visual representation and interaction, or aim to use embeddings as part of the computational pipeline for addressing downstream analytical tasks. To the best of our knowledge, this is the first survey that takes a detailed look at embedding methods through the lens of visual analytics, and the purpose of our survey article is to provide a systematic overview of the state of the art within the emerging field of embedding visualization. We design a categorization scheme for our approach, analyze the current research frontier based on peer-reviewed publications, and discuss existing trends, challenges, and potential research directions for using embeddings in the context of visual analytics. Furthermore, we provide an interactive survey browser for the collected and categorized survey data, which currently includes 122 entries that appeared between 2007 and 2023. 相似文献
As visualization makes the leap to mobile and situated settings, where data is increasingly integrated with the physical world using mixed reality, there is a corresponding need for effectively managing the immersed user's view of situated visualizations. In this paper we present an analysis of view management techniques for situated 3D visualizations in handheld augmented reality: a shadowbox, a world-in-miniature metaphor, and an interactive tour. We validate these view management solutions through a concrete implementation of all techniques within a situated visualization framework built using a web-based augmented reality visualization toolkit, and present results from a user study in augmented reality accessed using handheld mobile devices. 相似文献
We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explain-ability in the field of visual analytics. 相似文献
Machine learning practitioners often compare the results of different classifiers to help select, diagnose and tune models. We present Boxer, a system to enable such comparison. Our system facilitates interactive exploration of the experimental results obtained by applying multiple classifiers to a common set of model inputs. The approach focuses on allowing the user to identify interesting subsets of training and testing instances and comparing performance of the classifiers on these subsets. The system couples standard visual designs with set algebra interactions and comparative elements. This allows the user to compose and coordinate views to specify subsets and assess classifier performance on them. The flexibility of these compositions allow the user to address a wide range of scenarios in developing and assessing classifiers. We demonstrate Boxer in use cases including model selection, tuning, fairness assessment, and data quality diagnosis. 相似文献
During training sessions, sailors rely on feedback provided by the coaches to reinforce their skills and improve their performance. Nowadays, the incorporation of sensors on the boats enables coaches to potentially provide more informed feedback to the sailors. A common exercise during practice sessions, consists of two boats of the same class, sailing side by side in a straight line with different boat handling techniques. Coaches try to understand which techniques are that make one boat go faster than the other. The analysis of the obtained data from the boats is challenging given its multi-dimensional, time-varying and spatial nature. At present, coaches only rely on aggregated statistics reducing the complexity of the data, hereby losing local and temporal information. We describe a new domain characterization and present a visualization design that allows coaches to analyse the data, structuring their analysis and explore the data from different perspectives. A central element of the tool is the glyph design to intuitively represent and aggregate multiple aspects of the sensor data. We have conducted multiple user studies with naive users, sailors and coaches to evaluate the design and potential of the overall tool.
Autonomous unmanned aerial vehicles are complex systems of hardware, software, and human input. Understanding this complexity is key to their development and operation. Information visualizations already exist for exploring flight logs but comprehensive analyses currently require several disparate and custom tools. This design study helps address the pain points faced by autonomous unmanned aerial vehicle developers and operators. We contribute: a spiral development process model for grounded evaluation visualization development focused on progressively broadening target user involvement and refining user goals; a demonstration of the model as part of developing a deployed and adopted visualization system; a data and task abstraction for developers and operators performing post-flight analysis of autonomous unmanned aerial vehicle logs; the design and implementation of Data Comets , an open-source and web-based interactive visualization tool for post-flight log analysis incorporating temporal, geospatial, and multivariate data; and the results of a summative evaluation of the visualization system and our abstractions based on in-the-wild usage. A free copy of this paper and source code are available at osf.io/h4p7g 相似文献
Interaction techniques for temporal data are often focused on affecting the spatial aspects of the data, for instance through the use of transfer functions, camera navigation or clipping planes. However, the temporal aspect of the data interaction is often neglected. The temporal component is either visualized as individual time steps, an animation or a static summary over the temporal domain. When dealing with streaming data, these techniques are unable to cope with the task of re-viewing an interesting local spatio-temporal event, while continuing to observe the rest of the feed. We propose a novel technique that allows users to interactively specify areas of interest in the spatio-temporal domain. By employing a time-warp function, we are able to slow down time, freeze time or even travel back in time, around spatio-temporal events of interest. The combination of such a (pre-defined) time-warp function and brushing directly in the data to select regions of interest allows for a detailed review of temporally and spatially localized events, while maintaining an overview of the global spatio-temporal data. We demonstrate the utility of our technique with several usage scenarios. 相似文献
Computer-based technology has played a significant role in crime prevention over the past 30 years, especially with the popularization of spatial databases and crime mapping systems. Police departments frequently use hotspot analysis to identify regions that should be a priority in receiving preventive resources. Practitioners and researchers agree that tracking crime over time and identifying its geographic patterns are vital information for planning efficiently. Frequently, police departments have access to systems that are too complicated and excessively technical, leading to modest usage. By working closely together with domain experts from police agencies of two different countries, we identified and characterized five domain tasks inherent to the hotspot analysis problem and developed SHOC, a visualization tool that strives for simplicity and ease of use in helping users to perform all the domain tasks. SHOC is included in a visual analytics system that allows users without technical expertise to annotate, save, and share analyses. We also demonstrate that our system effectively supports the completion of the domain tasks in two different real-world case studies. 相似文献
Visualization of large vector line data is a core task in geographic and cartographic systems. Vector maps are often displayed at different cartographic generalization levels, traditionally by using several discrete levels-of-detail (LODs). This limits the generalization levels to a fixed and predefined set of LODs, and generally does not support smooth LOD transitions. However, fast GPUs and novel line rendering techniques can be exploited to integrate dynamic vector map LOD management into GPU-based algorithms for locally-adaptive line simplification and real-time rendering. We propose a new technique that interactively visualizes large line vector datasets at variable LODs. It is based on the Douglas-Peucker line simplification principle, generating an exhaustive set of line segments whose specific subsets represent the lines at any variable LOD. At run time, an appropriate and view-dependent error metric supports screen-space adaptive LOD levels and the display of the correct subset of line segments accordingly. Our implementation shows that we can simplify and display large line datasets interactively. We can successfully apply line style patterns, dynamic LOD selection lenses, and anti-aliasing techniques to our line rendering. 相似文献
Univariate visualizations like histograms, rug plots, or box plots provide concise visual summaries of distributions. However, each individual visualization may fail to robustly distinguish important features of a distribution, or provide sufficient information for all of the relevant tasks involved in summarizing univariate data. One solution is to juxtapose or superimpose multiple univariate visualizations in the same chart, as in Allen et al.'s [APW*19] “raincloud plots.” In this paper I examine the design space of raincloud plots, and, through a series of simulation studies, explore designs where the component visualizations mutually “defend” against situations where important distribution features are missed or trivial features are given undue prominence. I suggest a class of “defensive” raincloud plot designs that provide good mutual coverage for surfacing distributional features of interest. 相似文献
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformatics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has become a prominent topic of research in the visualization community over the past decades. To provide an overview and present the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions. Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b) summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to their data. 相似文献
Schematic transit maps (often called “metro maps” in the literature) are important to produce comprehensible visualizations of complex public transit networks. In this work, we investigate the problem of automatically drawing such maps on an octilinear grid with an arbitrary (but optimal) number of edge bends. Our approach can naturally deal with obstacles that should be respected in the final drawing (points of interest, rivers, coastlines) and can prefer grid edges near the real-world course of a line. This allows our drawings to be combined with existing maps, for example as overlays in map services. We formulate an integer linear program which can be used to solve the problem exactly. We also provide a fast approximation algorithm which greedily calculates shortest paths between node candidates on the underlying octilinear grid graph. Previous work used local search techniques to update node positions until a local optimum was found, but without guaranteeing octilinearity. We can thus calculate nearly optimal metro maps in a fraction of a second even for complex networks, enabling the interactive use of our method in map editors. 相似文献
Task-incremental learning (Task-IL) aims to enable an intelligent agent to continuously accumulate knowledge from new learning tasks without catastrophically forgetting what it has learned in the past. It has drawn increasing attention in recent years, with many algorithms being proposed to mitigate neural network forgetting. However, none of the existing strategies is able to completely eliminate the issues. Moreover, explaining and fully understanding what knowledge and how it is being forgotten during the incremental learning process still remains under-explored. In this paper, we propose KnowledgeDrift, a visual analytics framework, to interpret the network forgetting with three objectives: (1) to identify when the network fails to memorize the past knowledge, (2) to visualize what information has been forgotten, and (3) to diagnose how knowledge attained in the new model interferes with the one learned in the past. Our analytical framework first identifies the occurrence of forgetting by tracking the task performance under the incremental learning process and then provides in-depth inspections of drifted information via various levels of data granularity. KnowledgeDrift allows analysts and model developers to enhance their understanding of network forgetting and compare the performance of different incremental learning algorithms. Three case studies are conducted in the paper to further provide insights and guidance for users to effectively diagnose catastrophic forgetting over time. 相似文献