首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For surgical planning, the exploration of 3D visualizations and 2D slice views is essential. However, the generation of visualizations which support the specific treatment decisions is very tedious. Therefore, the reuse of once designed visualizations for similar cases can strongly accelerate the process of surgical planning. We present a new technique that enables the easy reuse of both medical visualization types: 3D scenes and 2D slice views. We introduce the keystates as a concept to describe the state of a visualization in a general manner. They can be easily applied to new datasets to create similar visualizations. Keystates can be shared between surgeons of one specialization to reproduce and document the planning process for collaborative work. Furthermore, animations can support the surgeon on individual exploration and are also useful in collaborative environments, where complex issues must be presented in a short time. Therefore, we provide a framework, where animations can be visually designed by surgeons during their exploration process without any programming or authoring skills. We discuss several transitions between different visualizations and present an application from clinical routine.  相似文献   

2.
Multiscale visualization using data cubes   总被引:1,自引:0,他引:1  
Most analysts start with an overview of the data before gradually refining their view to be more focused and detailed. Multiscale pan-and-zoom systems are effective because they directly support this approach. However, generating abstract overviews of large data sets is difficult and most systems take advantage of only one type of abstraction: visual abstraction. Furthermore, these existing systems limit the analyst to a single zooming path on their data and thus to a single set of abstract views. This paper presents: 1) a formalism for describing multiscale visualizations of data cubes with both data and visual abstraction and 2) a method for independently zooming along one or more dimensions by traversing a zoom graph with nodes at different levels of detail. As an example of how to design multiscale visualizations using our system, we describe four design patterns using our formalism. These design patterns show the effectiveness of multiscale visualization of general relational databases.  相似文献   

3.
In 2005, Franco Moretti introduced Distant Reading to analyse entire literary text collections. This was a rather revolutionary idea compared to the traditional Close Reading, which focuses on the thorough interpretation of an individual work. Both reading techniques are the prior means of Visual Text Analysis. We present an overview of the research conducted since 2005 on supporting text analysis tasks with close and distant reading visualizations in the digital humanities. Therefore, we classify the observed papers according to a taxonomy of text analysis tasks, categorize applied close and distant reading techniques to support the investigation of these tasks and illustrate approaches that combine both reading techniques in order to provide a multi‐faceted view of the textual data. In addition, we take a look at the used text sources and at the typical data transformation steps required for the proposed visualizations. Finally, we summarize collaboration experiences when developing visualizations for close and distant reading, and we give an outlook on future challenges in that research area.  相似文献   

4.
Molecular systems may be visualized with various degrees of structural abstraction, support of spatial perception, and ‘illustrativeness.’ In this work we propose and realize methods to create seamless transformations that allow us to affect and change each of these three parameters individually. The resulting transitions give viewers a dedicated control of abstraction in illustrative molecular visualization and, consequently, allow them to seamlessly explore the resulting abstraction space for obtaining a fundamental understanding of molecular systems. We show example visualizations created with our approach and report informal feedback on our technique from domain experts.  相似文献   

5.
The use of multiple coordinated views (MCV) in data visualization provides analytic power because it allows a person to explore data under a variety of different perspectives. Since this design pattern utilizes multiple visualizations and requires coordinated interactions across the views, a clever use of screen space is vital and many synchronized interface operations must be provided. Bringing this design pattern to tablet computers is challenging due to their small display size and the absence of keyboard and mouse input. In this article, we explain important design considerations for MCV visualization on tablets and describe a prototype MCV visualization system we have built for the iPad. The design is based on the principles of maximizing screen space for data presentation, promoting consistent interactions across visualizations, and minimizing occlusion from a person's hands.  相似文献   

6.
Data visualization is regularly promoted for its ability to reveal stories within data, yet these “data stories” differ in important ways from traditional forms of storytelling. Storytellers, especially online journalists, have increasingly been integrating visualizations into their narratives, in some cases allowing the visualization to function in place of a written story. In this paper, we systematically review the design space of this emerging class of visualizations. Drawing on case studies from news media to visualization research, we identify distinct genres of narrative visualization. We characterize these design differences, together with interactivity and messaging, in terms of the balance between the narrative flow intended by the author (imposed by graphical elements and the interface) and story discovery on the part of the reader (often through interactive exploration). Our framework suggests design strategies for narrative visualization, including promising under-explored approaches to journalistic storytelling and educational media.  相似文献   

7.
Brushing of attribute clouds for the visualization of multivariate data   总被引:1,自引:0,他引:1  
The visualization and exploration of multivariate data is still a challenging task. Methods either try to visualize all variables simultaneously at each position using glyph-based approaches or use linked views for the interaction between attribute space and physical domain such as brushing of scatterplots. Most visualizations of the attribute space are either difficult to understand or suffer from visual clutter. We propose a transformation of the high-dimensional data in attribute space to 2D that results in a point cloud, called attribute cloud, such that points with similar multivariate attributes are located close to each other. The transformation is based on ideas from multivariate density estimation and manifold learning. The resulting attribute cloud is an easy to understand visualization of multivariate data in two dimensions. We explain several techniques to incorporate additional information into the attribute cloud, that help the user get a better understanding of multivariate data. Using different examples from fluid dynamics and climate simulation, we show how brushing can be used to explore the attribute cloud and find interesting structures in physical space.  相似文献   

8.
9.
In many domains increased collaboration has lead to more innovation by fostering the sharing of knowledge, skills, and ideas. Shared analysis of information visualizations does not only lead to increased information processing power, but team members can also share, negotiate, and discuss their views and interpretations on a dataset and contribute unique perspectives on a given problem. Designing technologies to support collaboration around information visualizations poses special challenges and relatively few systems have been designed. We focus on supporting small groups collaborating around information visualizations in a co-located setting, using a shared interactive tabletop display. We introduce an analysis of challenges and requirements for the design of co-located collaborative information visualization systems. We then present a new system that facilitates hierarchical data comparison tasks for this type of collaborative work. Our system supports multi-user input, shared and individual views on the hierarchical data visualization, flexible use of representations, and flexible workspace organization to facilitate group work around visualizations.  相似文献   

10.
Data summarization allows analysts to explore datasets that may be too complex or too large to visualize in detail. Designers face a number of design and implementation choices when using summarization in visual analytics systems. While these choices influence the utility of the resulting system, there are no clear guidelines for the use of these summarization techniques. In this paper, we codify summarization use in existing systems to identify key factors in the design of summary visualizations. We use quantitative content analysis to systematically survey examples of visual analytics systems and enumerate the use of these design factors in data summarization. Through this analysis, we expose the relationship between design considerations, strategies for data summarization in visualization systems, and how different summarization methods influence the analyses supported by systems. We use these results to synthesize common patterns in real‐world use of summary visualizations and highlight open challenges and opportunities that these patterns offer for designing effective systems. This work provides a more principled understanding of design practices for summary visualization and offers insight into underutilized approaches.  相似文献   

11.
Focusing on context in network traffic analysis   总被引:1,自引:0,他引:1  
The time-based network traffic visualizer combines low-level, textual detail with multiple visualizations of the larger context to help users construct a security event's big picture. TNV is a visualization tool grounded in an under standing of the work practices of security analysts. We designed it to support ID analysis by giving analysts a visual display that facilitates pattern and anomaly recognition, particularly overtime. It also offers more focused views on packet-level detail in the context of the surrounding network traffic.  相似文献   

12.
In this report, we organize and reflect on recent advances and challenges in the field of sports data visualization. The exponentially‐growing body of visualization research based on sports data is a prime indication of the importance and timeliness of this report. Sports data visualization research encompasses the breadth of visualization tasks and goals: exploring the design of new visualization techniques; adapting existing visualizations to a novel domain; and conducting design studies and evaluations in close collaboration with experts, including practitioners, enthusiasts, and journalists. Frequently this research has impact beyond sports in both academia and in industry because it is i) grounded in realistic, highly heterogeneous data, ii) applied to real‐world problems, and iii) designed in close collaboration with domain experts. In this report, we analyze current research contributions through the lens of three categories of sports data: box score data (data containing statistical summaries of a sport event such as a game), tracking data (data about in‐game actions and trajectories), and meta‐data (data about the sport and its participants but not necessarily a given game). We conclude this report with a high‐level discussion of sports visualization research informed by our analysis—identifying critical research gaps and valuable opportunities for the visualization community. More information is available at the STAR's website: https://sportsdataviz.github.io/ .  相似文献   

13.
In this paper, we present a systematization of techniques that use quality metrics to help in the visual exploration of meaningful patterns in high-dimensional data. In a number of recent papers, different quality metrics are proposed to automate the demanding search through large spaces of alternative visualizations (e.g., alternative projections or ordering), allowing the user to concentrate on the most promising visualizations suggested by the quality metrics. Over the last decade, this approach has witnessed a remarkable development but few reflections exist on how these methods are related to each other and how the approach can be developed further. For this purpose, we provide an overview of approaches that use quality metrics in high-dimensional data visualization and propose a systematization based on a thorough literature review. We carefully analyze the papers and derive a set of factors for discriminating the quality metrics, visualization techniques, and the process itself. The process is described through a reworked version of the well-known information visualization pipeline. We demonstrate the usefulness of our model by applying it to several existing approaches that use quality metrics, and we provide reflections on implications of our model for future research.  相似文献   

14.
Multivariate graphs are prolific across many fields, including transportation and neuroscience. A key task in graph analysis is the exploration of connectivity, to, for example, analyze how signals flow through neurons, or to explore how well different cities are connected by flights. While standard node‐link diagrams are helpful in judging connectivity, they do not scale to large networks. Adjacency matrices also do not scale to large networks and are only suitable to judge connectivity of adjacent nodes. A key approach to realize scalable graph visualization are queries: instead of displaying the whole network, only a relevant subset is shown. Query‐based techniques for analyzing connectivity in graphs, however, can also easily suffer from cluttering if the query result is big enough. To remedy this, we introduce techniques that provide an overview of the connectivity and reveal details on demand. We have two main contributions: (1) two novel visualization techniques that work in concert for summarizing graph connectivity; and (2) Graffinity, an open‐source implementation of these visualizations supplemented by detail views to enable a complete analysis workflow. Graffinity was designed in a close collaboration with neuroscientists and is optimized for connectomics data analysis, yet the technique is applicable across domains. We validate the connectivity overview and our open‐source tool with illustrative examples using flight and connectomics data.  相似文献   

15.
Data visualizations have been widely used on mobile devices like smartphones for various tasks (e.g., visualizing personal health and financial data), making it convenient for people to view such data anytime and anywhere. However, others nearby can also easily peek at the visualizations, resulting in personal data disclosure. In this paper, we propose a perception-driven approach to transform mobile data visualizations into privacy-preserving ones. Specifically, based on human visual perception, we develop a masking scheme to adjust the spatial frequency and luminance contrast of colored visualizations. The resulting visualization retains its original information in close proximity but reduces visibility when viewed from a certain distance or farther away. We conducted two user studies to inform the design of our approach (N=16) and systematically evaluate its performance (N=18), respectively. The results demonstrate the effectiveness of our approach in terms of privacy preservation for mobile data visualizations.  相似文献   

16.
Temporal (Dynamic) multivariate networks consist of objects and relationships with a variety of attributes, and the networks change over time. Exploring such kind of networks in visualization is of great significance and full of challenges as its time-varying and multivariate nature. Most of the existing dynamic network visualization techniques focus on the topological structure evolution lacking of exploration on the multivariate data (multiple attributes) thoroughly, and do not cover comprehensive analyses on multiple granularities. In this paper, we propose TMNVis, an interactive visualization system to explore the evolution of temporal multivariate network. Firstly we list a series of tasks on three granularities: global level, subgroup level and individual level. Secondly three main views, which rely mainly on timeline-based method while animation subsidiary, are designed to resolve the analysis tasks. Thirdly we design a series of flexible interactions and develop a prototype system. At last we verify the effectiveness and usefulness of TMNVis using a real-world academic collaboration data.  相似文献   

17.
The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the non‐linear nature of the exploratory process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses. In this paper we present CLUE (Capture, Label, Understand, Explain), a model that tightly integrates data exploration and presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author “Vistories”, visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. We discuss how the CLUE approach can be integrated into visualization tools and provide a prototype implementation. Finally, we demonstrate the general applicability of the model in two usage scenarios: a Gapminder‐inspired visualization to explore public health data and an example from molecular biology that illustrates how Vistories could be used in scientific journals.  相似文献   

18.
Chart construction errors, such as truncated axes or inexpressive visual encodings, can hinder reading a visualization, or worse, imply misleading facts about the underlying data. These errors can be caught by critical readings of visualizations, but readers must have a high level of data and design literacy and must be paying close attention. To address this issue, we introduce VisuaLint: a technique for surfacing chart construction errors in situ. Inspired by the ubiquitous red wavy underline that indicates spelling mistakes, visualization elements that contain errors (e.g., axes and legends) are sketchily rendered and accompanied by a concise annotation. VisuaLint is unobtrusive — it does not interfere with reading a visualization — and its direct display establishes a close mapping between erroneous elements and the expression of error. We demonstrate five examples of VisualLint and present the results of a crowdsourced evaluation (N = 62) of its efficacy. These results contribute an empirical baseline proficiency for recognizing chart construction errors, and indicate near-universal difficulty in error identification. We find that people more reliably identify chart construction errors after being shown examples of VisuaLint, and prefer more verbose explanations for unfamiliar or less obvious flaws.  相似文献   

19.
Collaborative visualization of large-scale datasets across geographically distributed sites is becoming increasingly important for Earth Sciences. Not only does it enhance our understanding of the geological systems, but also enables near-real-time scientific data acquisition and exploration across distant locations. While such a collaborative environment is feasible with advanced optical networks and resource sharing in the form of Grid, many technical challenges remain: (1) on-demand discovery, selection and configuration of supporting end and network resources; (2) construction of applications on heterogeneous, distributed environments; and (3) use of novel exotic transport protocols to achieve high performance. To address these issues, we describe the multi-layered OptIPuter middleware technologies, including simple resource abstractions, dynamic network provisioning, and novel data transport services. In this paper, we present an evaluation of the first integrated prototype of the OptIPuter system software recently demonstrated at iGrid 2005, which successfully supports real-time collaborative visualizations of 3D multi-gigabyte earth science datasets.  相似文献   

20.
Multilayer hybrid visualizations to support 3D GIS   总被引:3,自引:0,他引:3  
In this paper, we present a unique hybrid visualization system for spatial data. Although some existing 3D GIS systems offer 2D views they are typically isolated from the 3D view in that they are presented in a separate window. Our system is a novel hybrid 2D/3D approach that seamlessly integrates 2D and 3D views of the same data. In our interface, multiple layers of information are continuously transformed between the 2D and 3D modes under the control of the user, directly over a base terrain. In this way, our prototype system is able to depict 2D and 3D views within the same window. This has advantages, since 2D and 3D visualizations can each be easier to interpret in different contexts.In this work we develop this concept of a hybrid visualization by presenting a comprehensive set of capabilities within our distinctive system. These include new facilities such as: hybrid landmark, 3D point, and chart layers, the grouping of multiple hybrid layers, layer painting, the merging of layer controls and consistent zooming functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号