共查询到20条相似文献,搜索用时 15 毫秒
1.
Handling emergencies requires efficient and effective collaboration of medical professionals. To analyze their performance, in an application study, we have developed VisCoMET, a visual analytics approach displaying interactions of healthcare personnel in a triage training of a mass casualty incident. The application scenario stems from social interaction research, where the collaboration of teams is studied from different perspectives. We integrate recorded annotations from multiple sources, such as recorded videos of the sessions, transcribed communication, and eye-tracking information. For each session, an information-rich timeline visualizes events across these different channels, specifically highlighting interactions between the team members. We provide algorithmic support to identify frequent event patterns and to search for user-defined event sequences. Comparing different teams, an overview visualization aggregates each training session in a visual glyph as a node, connected to similar sessions through edges. An application example shows the usage of the approach in the comparative analysis of triage training sessions, where multiple teams encountered the same scene, and highlights discovered insights. The approach was evaluated through feedback from visualization and social interaction experts. The results show that the approach supports reflecting on teams' performance by exploratory analysis of collaboration behavior while particularly enabling the comparison of triage training sessions. 相似文献
2.
Patrick Paetzold Rebecca Kehlbeck Hendrik Strobelt Yumeng Xue Sabine Storandt Oliver Deussen 《Computer Graphics Forum》2023,42(3):87-98
Euler diagrams are a popular technique to visualize set-typed data. However, creating diagrams using simple shapes remains a challenging problem for many complex, real-life datasets. To solve this, we propose RectEuler: a flexible, fully-automatic method using rectangles to create Euler-like diagrams. We use an efficient mixed-integer optimization scheme to place set labels and element representatives (e.g., text or images) in conjunction with rectangles describing the sets. By defining appropriate constraints, we adhere to well-formedness properties and aesthetic considerations. If a dataset cannot be created within a reasonable time or at all, we iteratively split the diagram into multiple components until a drawable solution is found. Redundant encoding of the set membership using dots and set lines improves the readability of the diagram. Our web tool lets users see how the layout changes throughout the optimization process and provides interactive explanations. For evaluation, we perform quantitative and qualitative analysis across different datasets and compare our method to state-of-the-art Euler diagram generation methods. 相似文献
3.
J. Horák K. Furmanová B. Kozlíková T. Brázdil P. Holub M. Kačenga M. Gallo R. Nenutil J. Byška V. Rusňák 《Computer Graphics Forum》2023,42(3):63-73
Histopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browser-based WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists' annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist. 相似文献
4.
S. Mittenentzwei V. Weiß S. Schreiber L. A. Garrison S. Bruckner M. Pfister B. Preim M. Meuschke 《Computer Graphics Forum》2023,42(3):123-135
Authors use various media formats to convey disease information to a broad audience, from articles and videos to interviews or documentaries. These media often include human characters, such as patients or treating physicians, who are involved with the disease. While artistic media, such as hand-crafted illustrations and animations are used for health communication in many cases, our goal is to focus on data-driven visualizations. Over the last decade, narrative visualization has experienced increasing prominence, employing storytelling techniques to present data in an understandable way. Similar to classic storytelling formats, narrative medical visualizations may also take a human character-centered design approach. However, the impact of this form of data communication on the user is largely unexplored. This study investigates the protagonist's influence on user experience in terms of engagement, identification, self-referencing, emotional response, perceived credibility, and time spent in the story. Our experimental setup utilizes a character-driven story structure for disease stories derived from Joseph Campbell's Hero's Journey. Using this structure, we generated three conditions for a cerebral small vessel disease story that vary by their protagonist: (1) a patient, (2) a physician, and (3) a base condition with no human protagonist. These story variants formed the basis for our hypotheses on the effect of a human protagonist in disease stories, which we evaluated in an online study with 30 participants. Our findings indicate that a human protagonist exerts various influences on the story perception and that these also vary depending on the type of protagonist. 相似文献
5.
In this paper, we present an integrated visual analytics approach to support the parametrization and exploration of flow visualization based on the finite-time Lyapunov exponent. Such visualization of time-dependent flow faces various challenges, including the choice of appropriate advection times, temporal regions of interest, and spatial resolution. Our approach eases these challenges by providing the user with context by means of parametric aggregations, with support and guidance for a more directed exploration, and with a set of derived measures for better qualitative assessment. We demonstrate the utility of our approach with examples from computation fluid dynamics and time-dependent dynamical systems. 相似文献
6.
7.
Scatter plots are a powerful and well-established technique for visualizing the relationships between two variables as a collection of discrete points. However, especially when dealing with large and dense data, scatter plots often exhibit problems such as overplotting, making the data interpretation arduous. Density plots are able to overcome these limitations in highly populated regions, but fail to provide accurate information of individual data points. This is particularly problematic in sparse regions where the density estimate may not provide a good representation of the underlying data. In this paper, we present sunspot plots, a visualization technique that communicates dense data as a continuous data distribution, while preserving the discrete nature of data samples in sparsely populated areas. We furthermore demonstrate the advantages of our approach on typical failure cases of scatter plots within synthetic and real-world data sets and validate its effectiveness in a user study. 相似文献
8.
Hsiang-Yun Wu Benjamin Niedermann Shigeo Takahashi Maxwell J. Roberts Martin Nöllenburg 《Computer Graphics Forum》2020,39(3):619-646
Transit maps are designed to present information for using public transportation systems, such as urban railways. Creating a transit map is a time-consuming process, which requires iterative information selection, layout design, and usability validation, and thus maps cannot easily be customised or updated frequently. To improve this, scientists investigate fully- or semi-automatic techniques in order to produce high quality transit maps using computers and further examine their corresponding usability. Nonetheless, the quality gap between manually-drawn maps and machine-generated maps is still large. To elaborate the current research status, this state-of-the-art report provides an overview of the transit map generation process, primarily from Design, Machine, and Human perspectives. A systematic categorisation is introduced to describe the design pipeline, and an extensive analysis of perspectives is conducted to support the proposed taxonomy. We conclude this survey with a discussion on the current research status, open challenges, and future directions. 相似文献
9.
S. van der Linden B.M. Wulterkens M.M. van Gilst S. Overeem C. van Pul A. Vilanova S. van den Elzen 《Computer Graphics Forum》2023,42(3):161-172
In many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives. 相似文献
10.
Animated visualizations are one of the methods for finding and understanding complex structures of time-dependent vector fields. Many visualization designs can be used to this end, such as streamlines, vector glyphs, and image-based techniques. While all such designs can depict any vector field, their effectiveness in highlighting particular field aspects has not been fully explored. To fill this gap, we compare three animated vector field visualization techniques, OLIC, IBFV, and particles, for a critical point detection-and-classification task through a user study. Our results show that the effectiveness of the studied techniques depends on the nature of the critical points. We use these results to design a new flow visualization technique that combines all studied techniques in a single view by locally using the most effective technique for the patterns present in the flow data at that location. A second user study shows that our technique is more efficient and less error prone than the three other techniques used individually for the critical point detection task. 相似文献
11.
This paper does two main contributions to 2D time-dependent vector field topology. First, we present a technique for robust, accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time-dependent vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction of DHTs and time-dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows, as well as data from computational fluid dynamics. 相似文献
12.
Machine learning practitioners often compare the results of different classifiers to help select, diagnose and tune models. We present Boxer, a system to enable such comparison. Our system facilitates interactive exploration of the experimental results obtained by applying multiple classifiers to a common set of model inputs. The approach focuses on allowing the user to identify interesting subsets of training and testing instances and comparing performance of the classifiers on these subsets. The system couples standard visual designs with set algebra interactions and comparative elements. This allows the user to compose and coordinate views to specify subsets and assess classifier performance on them. The flexibility of these compositions allow the user to address a wide range of scenarios in developing and assessing classifiers. We demonstrate Boxer in use cases including model selection, tuning, fairness assessment, and data quality diagnosis. 相似文献
13.
14.
P. Riehmann G. Molina León J. Reibert F. Echtler B. Froehlich 《Computer Graphics Forum》2020,39(3):265-276
This paper presents a short-contact multitouch vocabulary for interacting with scatterplot matrices (SPLOMs) on wall-sized displays. Fling-based gestures overcome central interaction challenges of such large displays by avoiding long swipes on the typically blunt surfaces, frequent physical navigation by walking for accessing screen areas beyond arm's reach in the horizontal direction and uncomfortable postures for accessing screen areas in the vertical direction. Furthermore, we make use of the display's high resolution and large size by supporting the efficient specification of two-tiered focus + context regions which are consistently propagated across the SPLOM. These techniques are complemented by axis-centered and lasso-based selection techniques for specifying subsets of the data. An expert review as well as a user study confirmed the potential and general usability of our seamlessly integrated multitouch interaction techniques for SPLOMs on large vertical displays. 相似文献
15.
Reem Alghamdi Thomas Müller Alberto Jaspe-Villanueva Markus Hadwiger Filip Sadlo 《Computer Graphics Forum》2023,42(3):39-49
We present a novel approach for rendering volumetric data including the Doppler effect of light. Similar to the acoustic Doppler effect, which is caused by relative motion between a sound emitter and an observer, light waves also experience compression or expansion when emitter and observer exhibit relative motion. We account for this by employing spectral volume rendering in an emission–absorption model, with the volumetric matter moving according to an accompanying vector field, and emitting and attenuating light at wavelengths subject to the Doppler effect. By introducing a novel piecewise linearear representation of the involved light spectra, we achieve accurate volume rendering at interactive frame rates. We compare our technique to rendering with traditional point-based spectral representation, and demonstrate its utility using a simulation of galaxy formation. 相似文献
16.
17.
Existing work on visualizing multivariate graphs is primarily concerned with representing the attributes of nodes. Even though edges are the constitutive elements of networks, there have been only few attempts to visualize attributes of edges. In this work, we focus on the critical importance of edge attributes for interpreting network visualizations and building trust in the underlying data. We propose ‘unfolding of edges’ as an interactive approach to integrate multivariate edge attributes dynamically into existing node-link diagrams. Unfolding edges is an in-situ approach that gradually transforms basic links into detailed representations of the associated edge attributes. This approach extends focus+context, semantic zoom, and animated transitions for network visualizations to accommodate edge details on-demand without cluttering the overall graph layout. We explore the design space for the unfolding of edges, which covers aspects of making space for the unfolding, of actually representing the edge context, and of navigating between edges. To demonstrate the utility of our approach, we present two case studies in the context of historical network analysis and computational social science. For these, web-based prototypes were implemented based on which we conducted interviews with domain experts. The experts' feedback suggests that the proposed unfolding of edges is a useful tool for exploring rich edge information of multivariate graphs. 相似文献
18.
In this paper, we introduce Canis, a high-level domain-specific language that enables declarative specifications of data-driven chart animations. By leveraging data-enriched SVG charts, its grammar of animations can be applied to the charts created by existing chart construction tools. With Canis, designers can select marks from the charts, partition the selected marks into mark units based on data attributes, and apply animation effects to the mark units, with the control of when the effects start. The Canis compiler automatically synthesizes the Lottie animation JSON files [Aira], which can be rendered natively across multiple platforms. To demonstrate Canis’ expressiveness, we present a wide range of chart animations. We also evaluate its scalability by showing the effectiveness of our compiler in reducing the output specification size and comparing its performance on different platforms against D3. 相似文献
19.
Q. Li Y. J. Liu L. Chen X. C. Yang Y. Peng X. R. Yuan M. L. L. Wijerathne 《Computer Graphics Forum》2020,39(3):523-535
Despite the significance of tracking human mobility dynamics in a large-scale earthquake evacuation for an effective first response and disaster relief, the general understanding of evacuation behaviors remains limited. Numerous individual movement trajectories, disaster damages of civil engineering, associated heterogeneous data attributes, as well as complex urban environment all obscure disaster evacuation analysis. Although visualization methods have demonstrated promising performance in emergency evacuation analysis, they cannot effectively identify and deliver the major features like speed or density, as well as the resulting evacuation events like congestion or turn-back. In this study, we propose a shot design approach to generate customized and narrative animations to track different evacuation features with different exploration purposes of users. Particularly, an intuitive scene feature graph that identifies the most dominating evacuation events is first constructed based on user-specific regions or their tracking purposes on a certain feature. An optimal camera route, i.e., a storyboard is then calculated based on the previous user-specific regions or features. For different evacuation events along this route, we employ the corresponding shot design to reveal the underlying feature evolution and its correlation with the environment. Several case studies confirm the efficacy of our system. The feedback from experts and users with different backgrounds suggests that our approach indeed helps them better embrace a comprehensive understanding of the earthquake evacuation. 相似文献
20.
N. W. Kim G. Ataguba S. C. Joyner Chuangdian Zhao Hyejin Im 《Computer Graphics Forum》2023,42(3):323-335
Modern visualization software and programming libraries have made data visualization construction easier for everyone. However, the extent of accessibility design they support for blind and low-vision people is relatively unknown. It is also unclear how they can improve chart content accessibility beyond conventional alternative text and data tables. To address these issues, we examined the current accessibility features in popular visualization tools, revealing limited support for the standard accessibility methods and scarce support for chart content exploration. Next, we investigate two promising accessibility approaches that provide off-the-shelf solutions for chart content accessibility: structured navigation and conversational interaction. We present a comparative evaluation study and discuss what to consider when incorporating them into visualization tools. 相似文献