首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Retrieving charts from a large corpus is a fundamental task that can benefit numerous applications such as visualization recommendations. The retrieved results are expected to conform to both explicit visual attributes (e.g., chart type, colormap) and implicit user intents (e.g., design style, context information) that vary upon application scenarios. However, existing example-based chart retrieval methods are built upon non-decoupled and low-level visual features that are hard to interpret, while definition-based ones are constrained to pre-defined attributes that are hard to extend. In this work, we propose a new framework, namely WYTIWYR (What-You-Think-Is-What-You-Retrieve), that integrates user intents into the chart retrieval process. The framework consists of two stages: first, the Annotation stage disentangles the visual attributes within the query chart; and second, the Retrieval stage embeds the user's intent with customized text prompt as well as bitmap query chart, to recall targeted retrieval result. We develop aprototype WYTIWYR system leveraging a contrastive language-image pre-training (CLIP) model to achieve zero-shot classification as well as multi-modal input encoding, and test the prototype on a large corpus with charts crawled from the Internet. Quantitative experiments, case studies, and qualitative interviews are conducted. The results demonstrate the usability and effectiveness of our proposed framework.  相似文献   

2.
ParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships. It provides a common interface for specifying these relations and transformations and for defining how they are used within the losses that govern the training process. Through this interface, ParaDime unifies parametric versions of DR techniques such as metric MDS, t-SNE, and UMAP. It allows users to fully customize all aspects of the DR process. We show how this ease of customization makes ParaDime suitable for experimenting with interesting techniques such as hybrid classification/embedding models and supervised DR. This way, ParaDime opens up new possibilities for visualizing high-dimensional data.  相似文献   

3.
    
Efficient visibility computation is a prominent requirement when designing automated camera control techniques for dynamic 3D environments; computer games, interactive storytelling or 3D media applications all need to track 3D entities while ensuring their visibility and delivering a smooth cinematic experience. Addressing this problem requires to sample a large set of potential camera positions and estimate visibility for each of them, which in practice is intractable despite the efficiency of ray-casting techniques on recent platforms. In this work, we introduce a novel GPU-rendering technique to efficiently compute occlusions of tracked targets in Toric Space coordinates – a parametric space designed for cinematic camera control. We then rely on this occlusion evaluation to derive an anticipation map predicting occlusions for a continuous set of cameras over a user-defined time window. We finally design a camera motion strategy exploiting this anticipation map to minimize the occlusions of tracked entities over time. The key features of our approach are demonstrated through comparison with traditionally used ray-casting on benchmark scenes, and through an integration in multiple game-like 3D scenes with heavy, sparse and dense occluders.  相似文献   

4.
We present a novel approach for rendering volumetric data including the Doppler effect of light. Similar to the acoustic Doppler effect, which is caused by relative motion between a sound emitter and an observer, light waves also experience compression or expansion when emitter and observer exhibit relative motion. We account for this by employing spectral volume rendering in an emission–absorption model, with the volumetric matter moving according to an accompanying vector field, and emitting and attenuating light at wavelengths subject to the Doppler effect. By introducing a novel piecewise linearear representation of the involved light spectra, we achieve accurate volume rendering at interactive frame rates. We compare our technique to rendering with traditional point-based spectral representation, and demonstrate its utility using a simulation of galaxy formation.  相似文献   

5.
Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models for estimating long-term toxicities related to radiotherapy doses in head and neck cancer patients. Developed in collaboration with domain experts in oncology and data mining, DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining. We demonstrate DASS with the development of two practical clinical stratification models and report feedback from domain experts. Finally, we describe the design lessons learned from this collaborative experience.  相似文献   

6.
We introduce an approach for converting pixel art into high-quality vector images. While much progress has been made on automatic conversion, there is an inherent ambiguity in pixel art, which can lead to a mismatch with the artist's original intent. Further, there is room for incorporating aesthetic preferences during the conversion. In consequence, this work introduces an interactive framework to enable users to guide the conversion process towards high-quality vector illustrations. A key idea of the method is to cast the conversion process into a spring-system optimization that can be influenced by the user. Hereby, it is possible to resolve various ambiguities that cannot be handled by an automatic algorithm.  相似文献   

7.
Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term “embedding” when describing the computational approach. Within this context, embeddings are usually (relatively) low-dimensional, distributed representations of various data types (such as texts or graphs), and since they have proven to be extremely useful for a variety of data analysis tasks across various disciplines and fields, they have become widely used. Existing visualization approaches aim to either support exploration and interpretation of the embedding space through visual representation and interaction, or aim to use embeddings as part of the computational pipeline for addressing downstream analytical tasks. To the best of our knowledge, this is the first survey that takes a detailed look at embedding methods through the lens of visual analytics, and the purpose of our survey article is to provide a systematic overview of the state of the art within the emerging field of embedding visualization. We design a categorization scheme for our approach, analyze the current research frontier based on peer-reviewed publications, and discuss existing trends, challenges, and potential research directions for using embeddings in the context of visual analytics. Furthermore, we provide an interactive survey browser for the collected and categorized survey data, which currently includes 122 entries that appeared between 2007 and 2023.  相似文献   

8.
3D animations are an effective method to learn about complex dynamic phenomena, such as mesoscale biological processes. The animators' goals are to convey a sense of the scene's overall complexity while, at the same time, visually guiding the user through a story of subsequent events embedded in the chaotic environment. Animators use a variety of visual emphasis techniques to guide the observers' attention through the story, such as highlighting, halos – or by manipulating motion parameters of the scene. In this paper, we investigate the effect of smoothing the motion of contextual scene elements to attract attention to focus elements of the story exhibiting high-frequency motion. We conducted a crowdsourced study with 108 participants observing short animations with two illustrative motion smoothing strategies: geometric smoothing through noise reduction of contextual motion trajectories and visual smoothing through motion blur of context items. We investigated the observers' ability to follow the story as well as the effect of the techniques on speed perception in a molecular scene. Our results show that moderate motion blur significantly improves users' ability to follow the story. Geometric motion smoothing is less effective but increases the visual appeal of the animation. However, both techniques also slow down the perceived speed of the animation. We discuss the implications of these results and derive design guidelines for animators of complex dynamic visualizations.  相似文献   

9.
    
In this paper, we introduce Canis, a high-level domain-specific language that enables declarative specifications of data-driven chart animations. By leveraging data-enriched SVG charts, its grammar of animations can be applied to the charts created by existing chart construction tools. With Canis, designers can select marks from the charts, partition the selected marks into mark units based on data attributes, and apply animation effects to the mark units, with the control of when the effects start. The Canis compiler automatically synthesizes the Lottie animation JSON files [Aira], which can be rendered natively across multiple platforms. To demonstrate Canis’ expressiveness, we present a wide range of chart animations. We also evaluate its scalability by showing the effectiveness of our compiler in reducing the output specification size and comparing its performance on different platforms against D3.  相似文献   

10.
Histopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browser-based WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists' annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist.  相似文献   

11.
12.
People are becoming increasingly sophisticated in their ability to navigate information spaces using search, hyperlinks, and visualization. But, mobile phones preclude the use of multiple coordinated views that have proven effective in the desktop environment (e.g., for business intelligence or visual analytics). In this work, we propose to model information as multivariate heterogeneous networks to enable greater analytic expression for a range of sensemaking tasks while suggesting a new, list-based paradigm with gestural navigation of structured information spaces on mobile phones. We also present a mobile application, called Orchard, which combines ideas from both faceted search and interactive network exploration in a visual query language to allow users to collect facets of interest during exploratory navigation. Our study showed that users could collect and combine these facets with Orchard, specifying network queries and projections that would only have been possible previously using complex data tools or custom data science.  相似文献   

13.
    
This paper does two main contributions to 2D time-dependent vector field topology. First, we present a technique for robust, accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time-dependent vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction of DHTs and time-dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows, as well as data from computational fluid dynamics.  相似文献   

14.
Understanding the behavior of deep reinforcement learning agents is a crucial requirement throughout their development. Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis of isolated internal representations; however, the overall decision-making of deep-learning RL agents remains opaque. To tackle this, we present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of singular predictions, and the comparison between agents. A sequence embedding view enables the multiscale analysis of state sequences, utilizing custom embedding techniques for a stable spatialization of the observations and internal states. We provide multiple layers: (1) a state space embedding, highlighting different groups of states inside the state-action sequences, (2) a trajectory view, emphasizing decision points, (3) a network activation mapping, visualizing the relationship between observations and network activations, (4) a transition embedding, enabling the analysis of state-to-state transitions. The embedding view is accompanied by an interactive reward view that captures the temporal development of metrics, which can be linked directly to states in the embedding. Lastly, a model list allows for the quick comparison of models across multiple metrics. Annotations can be exported to communicate results to different audiences. Our two-stage evaluation with eight experts confirms the effectiveness in identifying states of interest, comparing the quality of policies, and reasoning about the internal decision-making processes.  相似文献   

15.
Visualizing 3D vector fields is challenging because of occlusion problems and the difficulty of providing depth cues that adequately support the perception of direction of flow lines in 3D space. One of the depth cues that has proven most valuable for the perception of other kinds of 3D data, notably 3D networks and 3D point clouds, is structure-from-motion (also called the Kinetic Depth Effect); another powerful depth cue is stereoscopic viewing. We carried out an experiment of the perception of direction for short streamlines passing through a cutting plane. The conditions included viewing with and without structure-from-motion and with and without stereoscopic depth. Conditions also include comparing streamtubes to lines. The results show that for this particular task, stereo provided an effective depth cue, but structure-from-motion did not. Ringed streamtubes and streamcones provided good 3D direction information, even without stereoscopic viewing. We conclude with guidelines for viewing slices through vector fields.  相似文献   

16.
    
3D gaze tracking from a single RGB camera is very challenging due to the lack of information in determining the accurate gaze target from a monocular RGB sequence. The eyes tend to occupy only a small portion of the video, and even small errors in estimated eye orientations can lead to very large errors in the triangulated gaze target. We overcome these difficulties with a novel lightweight eyeball calibration scheme that determines the user-specific visual axis, eyeball size and position in the head. Unlike the previous calibration techniques, we do not need the ground truth positions of the gaze points. In the online stage, gaze is tracked by a new gaze fitting algorithm, and refined by a 3D gaze regression method to correct for bias errors. Our regression is pre-trained on several individuals and works well for novel users. After the lightweight one-time user calibration, our method operates in real time. Experiments show that our technique achieves state-of-the-art accuracy in gaze angle estimation, and we demonstrate applications of 3D gaze target tracking and gaze retargeting to an animated 3D character.  相似文献   

17.
    
Handling emergencies requires efficient and effective collaboration of medical professionals. To analyze their performance, in an application study, we have developed VisCoMET, a visual analytics approach displaying interactions of healthcare personnel in a triage training of a mass casualty incident. The application scenario stems from social interaction research, where the collaboration of teams is studied from different perspectives. We integrate recorded annotations from multiple sources, such as recorded videos of the sessions, transcribed communication, and eye-tracking information. For each session, an information-rich timeline visualizes events across these different channels, specifically highlighting interactions between the team members. We provide algorithmic support to identify frequent event patterns and to search for user-defined event sequences. Comparing different teams, an overview visualization aggregates each training session in a visual glyph as a node, connected to similar sessions through edges. An application example shows the usage of the approach in the comparative analysis of triage training sessions, where multiple teams encountered the same scene, and highlights discovered insights. The approach was evaluated through feedback from visualization and social interaction experts. The results show that the approach supports reflecting on teams' performance by exploratory analysis of collaboration behavior while particularly enabling the comparison of triage training sessions.  相似文献   

18.
Analyzing stenoses of the internal carotids – local constrictions of the artery – is a critical clinical task in cardiovascular disease treatment and prevention. For this purpose, we propose a self-contained pipeline for the visual analysis of carotid artery geometries. The only inputs are computed tomography angiography (CTA) scans, which are already recorded in clinical routine. We show how integrated model extraction and visualization can help to efficiently detect stenoses and we provide means for automatic, highly accurate stenosis degree computation. We directly connect multiple sophisticated processing stages, including a neural prediction network for lumen and plaque segmentation and automatic global diameter computation. We enable interactive and retrospective user control over the processing stages. Our aims are to increase user trust by making the underlying data validatable on the fly, to decrease adoption costs by minimizing external dependencies, and to optimize scalability by streamlining the data processing. We use interactive visualizations for data inspection and adaption to guide the user through the processing stages. The framework was developed and evaluated in close collaboration with radiologists and neurologists. It has been used to extract and analyze over 100 carotid bifurcation geometries and is built with a modular architecture, available as an extendable open-source platform.  相似文献   

19.
Modern visualization software and programming libraries have made data visualization construction easier for everyone. However, the extent of accessibility design they support for blind and low-vision people is relatively unknown. It is also unclear how they can improve chart content accessibility beyond conventional alternative text and data tables. To address these issues, we examined the current accessibility features in popular visualization tools, revealing limited support for the standard accessibility methods and scarce support for chart content exploration. Next, we investigate two promising accessibility approaches that provide off-the-shelf solutions for chart content accessibility: structured navigation and conversational interaction. We present a comparative evaluation study and discuss what to consider when incorporating them into visualization tools.  相似文献   

20.
Many studies have recently applied deep learning to the automatic colorization of line drawings. However, it is difficult to paint empty pupils using existing methods because the convolutional neural network are trained with pupils that have edges, which are generated from color images using image processing. Most actual line drawings have empty pupils that artists must paint in. In this paper, we propose a novel network model that transfers the pupil details in a reference color image to input line drawings with empty pupils. We also propose a method for accurately and automatically colorizing eyes. In this method, eye patches are extracted from a reference color image and automatically added to an input line drawing as color hints using our pupil position estimation network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号