首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commonly used linear and nonlinear constitutive material models in deformation simulation contain many simplifications and only cover a tiny part of possible material behavior. In this work we propose a framework for learning customized models of deformable materials from example surface trajectories. The key idea is to iteratively improve a correction to a nominal model of the elastic and damping properties of the object, which allows new forward simulations with the learned correction to more accurately predict the behavior of a given soft object. Space-time optimization is employed to identify gentle control forces with which we extract necessary data for model inference and to finally encapsulate the material correction into a compact parametric form. Furthermore, a patch based position constraint is proposed to tackle the challenge of handling incomplete and noisy observations arising in real-world examples. We demonstrate the effectiveness of our method with a set of synthetic examples, as well with data captured from real world homogeneous elastic objects.  相似文献   

2.
We present a method that detects boundaries of parts in 3D shapes represented as point clouds. Our method is based on a graph convolutional network architecture that outputs a probability for a point to lie in an area that separates two or more parts in a 3D shape. Our boundary detector is quite generic: it can be trained to localize boundaries of semantic parts or geometric primitives commonly used in 3D modeling. Our experiments demonstrate that our method can extract more accurate boundaries that are closer to ground-truth ones compared to alternatives. We also demonstrate an application of our network to fine-grained semantic shape segmentation, where we also show improvements in terms of part labeling performance.  相似文献   

3.
We present a deep learning method that propagates point-wise feature representations across shapes within a collection for the purpose of 3D shape segmentation. We propose a cross-shape attention mechanism to enable interactions between a shape's point-wise features and those of other shapes. The mechanism assesses both the degree of interaction between points and also mediates feature propagation across shapes, improving the accuracy and consistency of the resulting point-wise feature representations for shape segmentation. Our method also proposes a shape retrieval measure to select suitable shapes for cross-shape attention operations for each test shape. Our experiments demonstrate that our approach yields state-of-the-art results in the popular PartNet dataset.  相似文献   

4.
Modern acquisition techniques generate detailed point clouds that sample complex geometries. For instance, we are able to produce millimeter-scale acquisition of whole buildings. Processing and exploring geometrical information within such point clouds requires scalability, robustness to acquisition defects and the ability to model shapes at different scales. In this work, we propose a new representation that enriches point clouds with a multi-scale planar structure graph. We define the graph nodes as regions computed with planar segmentations at increasing scales and the graph edges connect regions that are similar across scales. Connected components of the graph define the planar structures present in the point cloud within a scale interval. For instance, with this information, any point is associated to one or several planar structures existing at different scales. We then use topological data analysis to filter the graph and provide the most prominent planar structures. Our representation naturally encodes a large range of information. We show how to efficiently extract geometrical details (e.g. tiles of a roof), arrangements of simple shapes (e.g. steps and mean ramp of a staircase), and large-scale planar proxies (e.g. walls of a building) and present several interactive tools to visualize, select and reconstruct planar primitives directly from raw point clouds. The effectiveness of our approach is demonstrated by an extensive evaluation on a variety of input data, as well as by comparing against state-of-the-art techniques and by showing applications to polygonal mesh reconstruction.  相似文献   

5.
We use a finite element model to predict the vibration response of objects in a rigid body simulation, such that rigid objects are augmented to provide a plausible elastic collision response between distant objects due to vibration. We start with a generalized eigenvalue decomposition of the elastic model to precompute a response to an impact at any point on an elastic object with fixed boundary conditions. Then, given a collision between objects, we generate an approximate response impulse to distribute to other objects already in contact with the colliding bodies. This can lead to distant impacts causing an object to slip, or a delicate stack of objects to fall. We also use a geodesic distance based spatial attenuation approximation for travelling waves in objects to respond to an impact at one contact with an impulse at other locations. This response ultimately allows a long distance relationship between contacts, both across a single object being struck, but also traversing the contact graph of a larger collection of objects. We qualitatively validate our approach with a ground truth simulation, and demonstrate a number of scenarios where a long distance relationship between contacts is valuable.  相似文献   

6.
We present an approach to incorporate topological priors in the reconstruction of a surface from a point scan. We base the reconstruction on basis functions which are optimized to provide a good fit to the point scan while satisfying predefined topological constraints. We optimize the parameters of a model to obtain a likelihood function over the reconstruction domain. The topological constraints are captured by persistence diagrams which are incorporated within the optimization algorithm to promote the correct topology. The result is a novel topology-aware technique which can (i) weed out topological noise from point scans, and (ii) capture certain nuanced properties of the underlying shape which could otherwise be lost while performing surface reconstruction. We show results reconstructing shapes with multiple potential topologies, compare to other classical surface construction techniques, and show the completion of real scan data.  相似文献   

7.
In this work, we consider the problem of estimating the 3D position of multiple humans in a scene as well as their body shape and articulation from a single RGB video recorded with a static camera. In contrast to expensive marker-based or multi-view systems, our lightweight setup is ideal for private users as it enables an affordable 3D motion capture that is easy to install and does not require expert knowledge. To deal with this challenging setting, we leverage recent advances in computer vision using large-scale pre-trained models for a variety of modalities, including 2D body joints, joint angles, normalized disparity maps, and human segmentation masks. Thus, we introduce the first non-linear optimization-based approach that jointly solves for the 3D position of each human, their articulated pose, their individual shapes as well as the scale of the scene. In particular, we estimate the scene depth and person scale from normalized disparity predictions using the 2D body joints and joint angles. Given the per-frame scene depth, we reconstruct a point-cloud of the static scene in 3D space. Finally, given the per-frame 3D estimates of the humans and scene point-cloud, we perform a space-time coherent optimization over the video to ensure temporal, spatial and physical plausibility. We evaluate our method on established multi-person 3D human pose benchmarks where we consistently outperform previous methods and we qualitatively demonstrate that our method is robust to in-the-wild conditions including challenging scenes with people of different sizes. Code: https://github.com/dluvizon/scene-aware-3d-multi-human  相似文献   

8.
Effective compression of densely sampled BRDF measurements is critical for many graphical or vision applications. In this paper, we present DeepBRDF, a deep-learning-based representation that can significantly reduce the dimensionality of measured BRDFs while enjoying high quality of recovery. We consider each measured BRDF as a sequence of image slices and design a deep autoencoder with a masked L2 loss to discover a nonlinear low-dimensional latent space of the high-dimensional input data. Thorough experiments verify that the proposed method clearly outperforms PCA-based strategies in BRDF data compression and is more robust. We demonstrate the effectiveness of DeepBRDF with two applications. For BRDF editing, we can easily create a new BRDF by navigating on the low-dimensional manifold of DeepBRDF, guaranteeing smooth transitions and high physical plausibility. For BRDF recovery, we design another deep neural network to automatically generate the full BRDF data from a single input image. Aided by our DeepBRDF learned from real-world materials, a wide range of reflectance behaviors can be recovered with high accuracy.  相似文献   

9.
There has been significant progress in generating an animatable 3D human avatar from a single image. However, recovering texture for the 3D human avatar from a single image has been relatively less addressed. Because the generated 3D human avatar reveals the occluded texture of the given image as it moves, it is critical to synthesize the occluded texture pattern that is unseen from the source image. To generate a plausible texture map for 3D human avatars, the occluded texture pattern needs to be synthesized with respect to the visible texture from the given image. Moreover, the generated texture should align with the surface of the target 3D mesh. In this paper, we propose a texture synthesis method for a 3D human avatar that incorporates geometry information. The proposed method consists of two convolutional networks for the sampling and refining process. The sampler network fills in the occluded regions of the source image and aligns the texture with the surface of the target 3D mesh using the geometry information. The sampled texture is further refined and adjusted by the refiner network. To maintain the clear details in the given image, both sampled and refined texture is blended to produce the final texture map. To effectively guide the sampler network to achieve its goal, we designed a curriculum learning scheme that starts from a simple sampling task and gradually progresses to the task where the alignment needs to be considered. We conducted experiments to show that our method outperforms previous methods qualitatively and quantitatively.  相似文献   

10.
Facial makeup enriches the beauty of not only real humans but also virtual characters; therefore, makeup for 3D facial models is highly in demand in productions. However, painting directly on 3D faces and capturing real-world makeup are costly, and extracting makeup from 2D images often struggles with shading effects and occlusions. This paper presents the first method for extracting makeup for 3D facial models from a single makeup portrait. Our method consists of the following three steps. First, we exploit the strong prior of 3D morphable models via regression-based inverse rendering to extract coarse materials such as geometry and diffuse/specular albedos that are represented in the UV space. Second, we refine the coarse materials, which may have missing pixels due to occlusions. We apply inpainting and optimization. Finally, we extract the bare skin, makeup, and an alpha matte from the diffuse albedo. Our method offers various applications for not only 3D facial models but also 2D portrait images. The extracted makeup is well-aligned in the UV space, from which we build a large-scale makeup dataset and a parametric makeup model for 3D faces. Our disentangled materials also yield robust makeup transfer and illumination-aware makeup interpolation/removal without a reference image.  相似文献   

11.
In this paper, we tackle the challenging problem of 3D keypoint estimation of general objects using a novel implicit representation. Previous works have demonstrated promising results for keypoint prediction through direct coordinate regression or heatmap-based inference. However, these methods are commonly studied for specific subjects, such as human bodies and faces, which possess fixed keypoint structures. They also suffer in several practical scenarios where explicit or complete geometry is not given, including images and partial point clouds. Inspired by the recent success of advanced implicit representation in reconstruction tasks, we explore the idea of using an implicit field to represent keypoints. Specifically, our key idea is employing spheres to represent 3D keypoints, thereby enabling the learnability of the corresponding signed distance field. Explicit key-points can be extracted subsequently by our algorithm based on the Hough transform. Quantitative and qualitative evaluations also show the superiority of our representation in terms of prediction accuracy.  相似文献   

12.
Shadow removal for videos is an important and challenging vision task. In this paper, we present a novel shadow removal approach for videos captured by free moving cameras using illumination transfer optimization. We first detect the shadows of the input video using interactive fast video matting. Then, based on the shadow detection results, we decompose the input video into overlapped 2D patches, and find the coherent correspondences between the shadow and non‐shadow patches via discrete optimization technique built on the patch similarity metric. We finally remove the shadows of the input video sequences using an optimized illumination transfer method, which reasonably recovers the illumination information of the shadow regions and produces spatio‐temporal shadow‐free videos. We also process the shadow boundaries to make the transition between shadow and non‐shadow regions smooth. Compared with previous works, our method can handle videos captured by free moving cameras and achieve better shadow removal results. We validate the effectiveness of the proposed algorithm via a variety of experiments.  相似文献   

13.
14.
Physically plausible fracture animation is a challenging topic in computer graphics. Most of the existing approaches focus on the fracture of isotropic materials. We proposed a frame-field method for the design of anisotropic brittle fracture patterns. In this case, the material anisotropy is determined by two parts: anisotropic elastic deformation and anisotropic damage mechanics. For the elastic deformation, we reformulate the constitutive model of hyperelastic materials to achieve anisotropy by adding additional energy density functions in particular directions. For the damage evolution, we propose an improved phase-field fracture method to simulate the anisotropy by designing a deformation-aware second-order structural tensor. These two parts can present elastic anisotropy and fractured anisotropy independently, or they can be well coupled together to exhibit rich crack effects. To ensure the flexibility of simulation, we further introduce a frame-field concept to assist in setting local anisotropy, similar to the fiber orientation of textiles. For the discretization of the deformable object, we adopt a novel Material Point Method(MPM) according to its fracture-friendly nature. We also give some design criteria for anisotropic models through comparative analysis. Experiments show that our anisotropic method is able to be well integrated with the MPM scheme for simulating the dynamic fracture behavior of anisotropic materials.  相似文献   

15.
3D shape recognition has been actively investigated in the field of computer graphics. With the rapid development of deep learning, various deep models have been introduced and achieved remarkable results. Most 3D shape recognition methods are supervised and learn only from the large amount of labeled shapes. However, it is expensive and time consuming to obtain such a large training set. In contrast to these methods, this paper studies a semi-supervised learning framework to train a deep model for 3D shape recognition by using both labeled and unlabeled shapes. Inspired by the co-training algorithm, our method iterates between model training and pseudo-label generation phases. In the model training phase, we train two deep networks based on the point cloud and multi-view representation simultaneously. In the pseudo-label generation phase, we generate the pseudo-labels of the unlabeled shapes using the joint prediction of two networks, which augments the labeled set for the next iteration. To extract more reliable consensus information from multiple representations, we propose an uncertainty-aware consistency loss function to combine the two networks into a multimodal network. This not only encourages the two networks to give similar predictions on the unlabeled set, but also eliminates the negative influence of the large performance gap between the two networks. Experiments on the benchmark ModelNet40 demonstrate that, with only 10% labeled training data, our approach achieves competitive performance to the results reported by supervised methods.  相似文献   

16.
The estimation of differential quantities on oriented point cloud is a classical step for many geometry processing tasks in computer graphics and vision. Even if many solutions exist to estimate such quantities, they usually fail at satisfying both a stable estimation with theoretical guarantee, and the efficiency of the associated algorithm. Relying on the notion of corrected curvature measures [LRT22, LRTC20] designed for surfaces, the method introduced in this paper meets both requirements. Given a point of interest and a few nearest neighbours, our method estimates the whole curvature tensor information by generating random triangles within these neighbours and normalising the corrected curvature measures by the corrected area measure. We provide a stability theorem showing that our pointwise curvatures are accurate and convergent, provided the noise in position and normal information has a variance smaller than the radius of neighbourhood. Experiments and comparisons with the state-of-the-art confirm that our approach is more accurate and much faster than alternatives. The method is fully parallelizable, requires only one nearest neighbour request per point of computation, and is trivial to implement.  相似文献   

17.
We present a simple, efficient and low-memory technique, targeting fast construction of bounding volume hierarchies (BVH) for broad-phase collision detection. To achieve this, we devise a novel representation of BVH trees in memory. We develop a mapping of the implicit index representation to compact memory locations, based on simple bit-shifts, to then construct and evaluate bounding volume test trees (BVTT) during collision detection with real-time performance. We model the topology of the BVH tree implicitly as binary encodings which allows us to determine the nodes missing from a complete binary tree using the binary representation of the number of missing nodes. The simplicity of our technique allows for fast hierarchy construction achieving over speedup over the state-of-the-art. Making use of these characteristics, we show that not only it is feasible to rebuild the BVH at every frame, but that using our technique, it is actually faster than refitting and more memory efficient.  相似文献   

18.
Traditional 2D animation requires time and dedication since tens of thousands of frames need to be drawn by hand for a typical production. Many computer-assisted methods have been proposed to automatize the generation of inbetween frames from a set of clean line drawings, but they are all limited by a rigid workflow and a lack of artistic controls, which is in the most part due to the one-to-one stroke matching and interpolation problems they attempt to solve. In this work, we take a novel view on those problems by focusing on an earlier phase of the animation process that uses rough drawings (i.e., sketches). Our key idea is to recast the matching and interpolation problems so that they apply to transient embeddings, which are groups of strokes that only exist for a few keyframes. A transient embedding carries strokes between keyframes both forward and backward in time through a sequence of transformed lattices. Forward and backward strokes are then cross-faded using their thickness to yield rough inbetweens. With our approach, complex topological changes may be introduced while preserving visual motion continuity. As demonstrated on state-of-the-art 2D animation exercises, our system provides unprecedented artistic control through the non-linear exploration of movements and dynamics in real-time.  相似文献   

19.
We present a probabilistic framework to generate character animations based on weak control signals, such that the synthesized motions are realistic while retaining the stochastic nature of human movement. The proposed architecture, which is designed as a hierarchical recurrent model, maps each sub-sequence of motions into a stochastic latent code using a variational autoencoder extended over the temporal domain. We also propose an objective function which respects the impact of each joint on the pose and compares the joint angles based on angular distance. We use two novel quantitative protocols and human qualitative assessment to demonstrate the ability of our model to generate convincing and diverse periodic and non-periodic motion sequences without the need for strong control signals.  相似文献   

20.
We propose an edge-based method for 6DOF pose tracking of rigid objects using a monocular RGB camera. One of the critical problem for edge-based methods is to search the object contour points in the image corresponding to the known 3D model points. However, previous methods often produce false object contour points in case of cluttered backgrounds and partial occlusions. In this paper, we propose a novel edge-based 3D objects tracking method to tackle this problem. To search the object contour points, foreground and background clutter points are first filtered out using edge color cue, then object contour points are searched by maximizing their edge confidence which combines edge color and distance cues. Furthermore, the edge confidence is integrated into the edge-based energy function to reduce the influence of false contour points caused by cluttered backgrounds and partial occlusions. We also extend our method to multi-object tracking which can handle mutual occlusions. We compare our method with the recent state-of-art methods on challenging public datasets. Experiments demonstrate that our method improves robustness and accuracy against cluttered backgrounds and partial occlusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号