首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Commonly used linear and nonlinear constitutive material models in deformation simulation contain many simplifications and only cover a tiny part of possible material behavior. In this work we propose a framework for learning customized models of deformable materials from example surface trajectories. The key idea is to iteratively improve a correction to a nominal model of the elastic and damping properties of the object, which allows new forward simulations with the learned correction to more accurately predict the behavior of a given soft object. Space-time optimization is employed to identify gentle control forces with which we extract necessary data for model inference and to finally encapsulate the material correction into a compact parametric form. Furthermore, a patch based position constraint is proposed to tackle the challenge of handling incomplete and noisy observations arising in real-world examples. We demonstrate the effectiveness of our method with a set of synthetic examples, as well with data captured from real world homogeneous elastic objects.  相似文献   

2.
We use a finite element model to predict the vibration response of objects in a rigid body simulation, such that rigid objects are augmented to provide a plausible elastic collision response between distant objects due to vibration. We start with a generalized eigenvalue decomposition of the elastic model to precompute a response to an impact at any point on an elastic object with fixed boundary conditions. Then, given a collision between objects, we generate an approximate response impulse to distribute to other objects already in contact with the colliding bodies. This can lead to distant impacts causing an object to slip, or a delicate stack of objects to fall. We also use a geodesic distance based spatial attenuation approximation for travelling waves in objects to respond to an impact at one contact with an impulse at other locations. This response ultimately allows a long distance relationship between contacts, both across a single object being struck, but also traversing the contact graph of a larger collection of objects. We qualitatively validate our approach with a ground truth simulation, and demonstrate a number of scenarios where a long distance relationship between contacts is valuable.  相似文献   

3.
    
Shadow removal for videos is an important and challenging vision task. In this paper, we present a novel shadow removal approach for videos captured by free moving cameras using illumination transfer optimization. We first detect the shadows of the input video using interactive fast video matting. Then, based on the shadow detection results, we decompose the input video into overlapped 2D patches, and find the coherent correspondences between the shadow and non‐shadow patches via discrete optimization technique built on the patch similarity metric. We finally remove the shadows of the input video sequences using an optimized illumination transfer method, which reasonably recovers the illumination information of the shadow regions and produces spatio‐temporal shadow‐free videos. We also process the shadow boundaries to make the transition between shadow and non‐shadow regions smooth. Compared with previous works, our method can handle videos captured by free moving cameras and achieve better shadow removal results. We validate the effectiveness of the proposed algorithm via a variety of experiments.  相似文献   

4.
    
We present a simple, efficient and low-memory technique, targeting fast construction of bounding volume hierarchies (BVH) for broad-phase collision detection. To achieve this, we devise a novel representation of BVH trees in memory. We develop a mapping of the implicit index representation to compact memory locations, based on simple bit-shifts, to then construct and evaluate bounding volume test trees (BVTT) during collision detection with real-time performance. We model the topology of the BVH tree implicitly as binary encodings which allows us to determine the nodes missing from a complete binary tree using the binary representation of the number of missing nodes. The simplicity of our technique allows for fast hierarchy construction achieving over speedup over the state-of-the-art. Making use of these characteristics, we show that not only it is feasible to rebuild the BVH at every frame, but that using our technique, it is actually faster than refitting and more memory efficient.  相似文献   

5.
Dense dynamic aggregates of similar elements are frequent in natural phenomena and challenging to render under full real time constraints. The optimal representation to render them changes drastically depending on the distance at which they are observed, ranging from sets of detailed textured meshes for near views to point clouds for distant ones. Our multiscale representation use impostors to achieve the mid-range transition from mesh-based to point-based scales. To ensure a visual continuum, the impostor model should match as closely as possible the mesh on one side, and reduce to a single pixel response that equals point rendering on the other. In this paper, we propose a model based on rich spherical impostors, able to combine precomputed as well as dynamic procedural data, and offering seamless transitions from close instanced meshes to distant points. Our approach is architectured around an on-the-fly discrimination mechanism and intensively exploits the rough spherical geometry of the impostor proxy. In particular, we propose a new sampling mechanism to reconstruct novel views from the precomputed ones, together with a new conservative occlusion culling method, coupled with a two-pass rendering pipeline leveraging early-Z rejection. As a result, our system scales well and is even able to render sand, while supporting completely dynamic stackings.  相似文献   

6.
By-example aperiodic tilings are popular texture synthesis techniques that allow a fast, on-the-fly generation of unbounded and non-periodic textures with an appearance matching an arbitrary input sample called the “exemplar”. But by relying on uniform random sampling, these algorithms fail to preserve the autocovariance function, resulting in correlations that do not match the ones in the exemplar. The output can then be perceived as excessively random. In this work, we present a new method which can well preserve the autocovariance function of the exemplar. It consists in fetching contents with an importance sampler taking the explicit autocovariance function as the probability density function (pdf) of the sampler. Our method can be controlled for increasing or decreasing the randomness aspect of the texture. Besides significantly improving synthesis quality for classes of textures characterized by pronounced autocovariance functions, we moreover propose a real-time tiling and blending scheme that permits the generation of high-quality textures faster than former algorithms with minimal downsides by reducing the number of texture fetches.  相似文献   

7.
    
Research in rendering large point clouds traditionally focused on the generation and use of hierarchical acceleration structures that allow systems to load and render the smallest fraction of the data with the largest impact on the output. The generation of these structures is slow and time consuming, however, and therefore ill-suited for tasks such as quickly looking at scan data stored in widely used unstructured file formats, or to immediately display the results of point-cloud processing tasks. We propose a progressive method that is capable of rendering any point cloud that fits in GPU memory in real time, without the need to generate hierarchical acceleration structures in advance. Our method supports data sets with a large amount of attributes per point, achieves a load performance of up to 100 million points per second, displays already loaded data in real time while remaining data is still being loaded, and is capable of rendering up to one billion points using an on-the-fly generated shuffled vertex buffer as its data structure, instead of slow-to-generate hierarchical structures. Shuffling is done during loading in order to allow efficiently filling holes with random subsets, which leads to a higher quality convergence behavior.  相似文献   

8.
    
In the past few years, advances in graphics hardware have fuelled an explosion of research and development in the field of interactive and real-time rendering in screen space. Following this trend, a rapidly increasing number of applications rely on multifragment rendering solutions to develop visually convincing graphics applications with dynamic content. The main advantage of these approaches is that they encompass additional rasterised geometry, by retaining more information from the fragment sampling domain, thus augmenting the visibility determination stage. With this survey, we provide an overview of and insight into the extensive, yet active research and respective literature on multifragment rendering. We formally present the multifragment rendering pipeline, clearly identifying the construction strategies, the core image operation categories and their mapping to the respective applications. We describe features and trade-offs for each class of techniques, pointing out GPU optimisations and limitations and provide practical recommendations for choosing an appropriate method for each application. Finally, we offer fruitful context for discussion by outlining some existing problems and challenges as well as by presenting opportunities for impactful future research directions.  相似文献   

9.
    
We study a general form of gears known as non-circular gears that can transfer periodic motion with variable speed through their irregular shapes and eccentric rotation centers. To design functional non-circular gears is nontrivial, since the gear pair must have compatible shape to keep in contact during motion, so the driver gear can push the follower to rotate via a bounded torque that the motor can exert. To address the challenge, we model the geometry, kinematics, and dynamics of non-circular gears, formulate the design problem as a shape optimization, and identify necessary independent variables in the optimization search. Taking a pair of 2D shapes as inputs, our method optimizes them into gears by locating the rotation center on each shape, minimally modifying each shape to form the gear's boundary, and constructing appropriate teeth for gear meshing. Our optimized gears not only resemble the inputs but can also drive the motion with relatively small torque. We demonstrate our method's usability by generating a rich variety of non-circular gears from various inputs and 3D printing several of them.  相似文献   

10.
    
Physically plausible fracture animation is a challenging topic in computer graphics. Most of the existing approaches focus on the fracture of isotropic materials. We proposed a frame-field method for the design of anisotropic brittle fracture patterns. In this case, the material anisotropy is determined by two parts: anisotropic elastic deformation and anisotropic damage mechanics. For the elastic deformation, we reformulate the constitutive model of hyperelastic materials to achieve anisotropy by adding additional energy density functions in particular directions. For the damage evolution, we propose an improved phase-field fracture method to simulate the anisotropy by designing a deformation-aware second-order structural tensor. These two parts can present elastic anisotropy and fractured anisotropy independently, or they can be well coupled together to exhibit rich crack effects. To ensure the flexibility of simulation, we further introduce a frame-field concept to assist in setting local anisotropy, similar to the fiber orientation of textiles. For the discretization of the deformable object, we adopt a novel Material Point Method(MPM) according to its fracture-friendly nature. We also give some design criteria for anisotropic models through comparative analysis. Experiments show that our anisotropic method is able to be well integrated with the MPM scheme for simulating the dynamic fracture behavior of anisotropic materials.  相似文献   

11.
We present a learning-based approach for virtual try-on applications based on a fully convolutional graph neural network. In contrast to existing data-driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine-scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning-based models for virtual try-on applications.  相似文献   

12.
    
Several fast global illumination algorithms rely on the Virtual Point Lights framework. This framework separates illumination into two steps: first, propagate radiance in the scene and store it in virtual lights, then gather illumination from these virtual lights. To accelerate the second step, virtual lights and receiving points are grouped hierarchically, for example using Multi-Dimensional Lightcuts. Computing visibility between clusters of virtual lights and receiving points is a bottleneck. Separately, matrix completion algorithms reconstruct completely a low-rank matrix from an incomplete set of sampled elements. In this paper, we use adaptive matrix completion to approximate visibility information after an initial clustering step. We reconstruct visibility information using as little as 10 % to 20 % samples for most scenes, and combine it with shading information computed separately, in parallel on the GPU. Overall, our method computes global illumination 3 or more times faster than previous state-of-the-art methods.  相似文献   

13.
We present a method for estimating the main properties of human skin, leveraging a hyperspectral dataset of skin tones synthetically generated through a biophysical layered skin model and Monte Carlo light transport simulations. Our approach learns the mapping between the skin parameters and diffuse skin reflectance in such space through an encoder-decoder network. We assess the performance of RGB and spectral reflectance up to 1 μm, allowing the model to retrieve visible and near-infrared. Instead of restricting the parameters to values in the ranges reported in medical literature, we allow the model to exceed such ranges to gain expressiveness to recover outliers like beard, eyebrows, rushes and other imperfections. The continuity of our albedo space allows to recover smooth textures of skin properties, enabling reflectance manipulations by meaningful edits of the skin properties. The space is robust under different illumination conditions, and presents high spectral similarity with the current largest datasets of spectral measurements of real human skin while expanding its gamut.  相似文献   

14.
    
We present a physically based method to render the atmosphere of a planet from ground to space views. Our method is cheap to compute and, as compared to previous successful methods, does not require any high dimensional Lookup Tables (LUTs) and thus does not suffer from visual artifacts associated with them. We also propose a new approximation to evaluate light multiple scattering within the atmosphere in real time. We take a new look at what it means to render natural atmospheric effects, and propose a set of simple look up tables and parameterizations to render a sky and its aerial perspective. The atmosphere composition can change dynamically to match artistic visions and weather changes without requiring heavy LUT update. The complete technique can be used in real-time applications such as games, simulators or architecture pre-visualizations. The technique also scales from power-efficient mobile platforms up to PCs with high-end GPUs, and is also useful for accelerating path tracing.  相似文献   

15.
    
In physics-based character animation, Proportional-Derivative (PD) controllers are commonly used for tracking reference motions in motor control tasks. Stable PD (SPD) controllers significantly improve the numerical stability of traditional PD controllers and support large gains and large integration time steps during simulation [TLT11]. For an articulated rigid body system with n degrees of freedom, all SPD implementations to date, however, use an O(n3) dense matrix factorization based method. In this paper, we propose a linear time algorithm for SPD computation, which is based on Featherstone's forward dynamics formulation for articulated rigid body systems in generalized coordinates [Fea14]. We demonstrate the performance advantage of our algorithm by comparing with both the conventional dense matrix factorization based method and an alternative sparse matrix factorization based method. We show that the proposed algorithm provides superior stability when controlling complex models at large time steps. We further demonstrate that our algorithm can improve the learning speed and quality of a Deep Reinforcement Learning (DRL) system for physics-based character animation.  相似文献   

16.
    
We describe a method to use Spherical Gaussians with free directions and arbitrary sharpness and amplitude to approximate the precomputed local light field for any point on a surface in a scene. This allows for a high-quality reconstruction of these light fields in a manner that can be used to render the surfaces with precomputed global illumination in real-time with very low cost both in memory and performance. We also extend this concept to represent the illumination-weighted environment visibility, allowing for high-quality reflections of the distant environment with both surface-material properties and visibility taken into account. We treat obtaining the Spherical Gaussians as an optimization problem for which we train a Convolutional Neural Network to produce appropriate values for each of the Spherical Gaussians' parameters. We define this CNN in such a way that the produced parameters can be interpolated between adjacent local light fields while keeping the illumination in the intermediate points coherent.  相似文献   

17.
    
We present a computational technique that aids with the design of structurally-sound metal frames, tailored for robotic fabrication using an existing process that integrate automated bar bending, welding, and cutting. Aligning frames with structurally-favorable orientations, and decomposing models into fabricable units, we make the fabrication process scale-invariant, and frames globally align in an aesthetically-pleasing and structurally-informed manner. Relying on standard analysis of frames, we then co-optimize the shape and topology of bars at the local unit level. At this level, we minimize combinations of functional and aesthetic objectives under strict fabrication constraints that model the assembly of discrete sets of bent bars. We demonstrate the capabilities of our global-to-local approach on four robotically-constructed examples.  相似文献   

18.
    
The rich and evocative patterns of natural tessellations endow them with an unmistakable artistic appeal and structural properties which are echoed across design, production, and manufacturing. Unfortunately, interactive control of such patterns-as modeled by Voronoi diagrams, is limited to the simple two dimensional case and does not extend well tofreeform surfaces. We present an approach for direct modeling and editing of such cellular structures on surface meshes. The overall modeling experience is driven by a set of editing primitives which are efficiently implemented on graphics hardware. We feature a novel application for 3D printing on modern support-free additive manufacturing platforms. Our method decomposes the input surface into a cellular skeletal structure which hosts a set of overlay shells. In this way, material saving can be channeled to the shells while structural stability is channeled to the skeleton. To accommodate the available printer build volume, the cellular structure can be further split into moderately sized parts. Together with shells, they can be conveniently packed to save on production time. The assembly of the printed parts is streamlined by a part numbering scheme which respects the geometric layout of the input model.  相似文献   

19.
Traditional 2D animation requires time and dedication since tens of thousands of frames need to be drawn by hand for a typical production. Many computer-assisted methods have been proposed to automatize the generation of inbetween frames from a set of clean line drawings, but they are all limited by a rigid workflow and a lack of artistic controls, which is in the most part due to the one-to-one stroke matching and interpolation problems they attempt to solve. In this work, we take a novel view on those problems by focusing on an earlier phase of the animation process that uses rough drawings (i.e., sketches). Our key idea is to recast the matching and interpolation problems so that they apply to transient embeddings, which are groups of strokes that only exist for a few keyframes. A transient embedding carries strokes between keyframes both forward and backward in time through a sequence of transformed lattices. Forward and backward strokes are then cross-faded using their thickness to yield rough inbetweens. With our approach, complex topological changes may be introduced while preserving visual motion continuity. As demonstrated on state-of-the-art 2D animation exercises, our system provides unprecedented artistic control through the non-linear exploration of movements and dynamics in real-time.  相似文献   

20.
We present a probabilistic framework to generate character animations based on weak control signals, such that the synthesized motions are realistic while retaining the stochastic nature of human movement. The proposed architecture, which is designed as a hierarchical recurrent model, maps each sub-sequence of motions into a stochastic latent code using a variational autoencoder extended over the temporal domain. We also propose an objective function which respects the impact of each joint on the pose and compares the joint angles based on angular distance. We use two novel quantitative protocols and human qualitative assessment to demonstrate the ability of our model to generate convincing and diverse periodic and non-periodic motion sequences without the need for strong control signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号