共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei Cao Luan Lyu Xiaohua Ren Bob Zhang Zhixin Yang Enhua Wu 《Computer Graphics Forum》2020,39(7):93-104
Physically plausible fracture animation is a challenging topic in computer graphics. Most of the existing approaches focus on the fracture of isotropic materials. We proposed a frame-field method for the design of anisotropic brittle fracture patterns. In this case, the material anisotropy is determined by two parts: anisotropic elastic deformation and anisotropic damage mechanics. For the elastic deformation, we reformulate the constitutive model of hyperelastic materials to achieve anisotropy by adding additional energy density functions in particular directions. For the damage evolution, we propose an improved phase-field fracture method to simulate the anisotropy by designing a deformation-aware second-order structural tensor. These two parts can present elastic anisotropy and fractured anisotropy independently, or they can be well coupled together to exhibit rich crack effects. To ensure the flexibility of simulation, we further introduce a frame-field concept to assist in setting local anisotropy, similar to the fiber orientation of textiles. For the discretization of the deformable object, we adopt a novel Material Point Method(MPM) according to its fracture-friendly nature. We also give some design criteria for anisotropic models through comparative analysis. Experiments show that our anisotropic method is able to be well integrated with the MPM scheme for simulating the dynamic fracture behavior of anisotropic materials. 相似文献
2.
We use a finite element model to predict the vibration response of objects in a rigid body simulation, such that rigid objects are augmented to provide a plausible elastic collision response between distant objects due to vibration. We start with a generalized eigenvalue decomposition of the elastic model to precompute a response to an impact at any point on an elastic object with fixed boundary conditions. Then, given a collision between objects, we generate an approximate response impulse to distribute to other objects already in contact with the colliding bodies. This can lead to distant impacts causing an object to slip, or a delicate stack of objects to fall. We also use a geodesic distance based spatial attenuation approximation for travelling waves in objects to respond to an impact at one contact with an impulse at other locations. This response ultimately allows a long distance relationship between contacts, both across a single object being struck, but also traversing the contact graph of a larger collection of objects. We qualitatively validate our approach with a ground truth simulation, and demonstrate a number of scenarios where a long distance relationship between contacts is valuable. 相似文献
3.
We present a learning-based approach for virtual try-on applications based on a fully convolutional graph neural network. In contrast to existing data-driven models, which are trained for a specific garment or mesh topology, our fully convolutional model can cope with a large family of garments, represented as parametric predefined 2D panels with arbitrary mesh topology, including long dresses, shirts, and tight tops. Under the hood, our novel geometric deep learning approach learns to drape 3D garments by decoupling the three different sources of deformations that condition the fit of clothing: garment type, target body shape, and material. Specifically, we first learn a regressor that predicts the 3D drape of the input parametric garment when worn by a mean body shape. Then, after a mesh topology optimization step where we generate a sufficient level of detail for the input garment type, we further deform the mesh to reproduce deformations caused by the target body shape. Finally, we predict fine-scale details such as wrinkles that depend mostly on the garment material. We qualitatively and quantitatively demonstrate that our fully convolutional approach outperforms existing methods in terms of generalization capabilities and memory requirements, and therefore it opens the door to more general learning-based models for virtual try-on applications. 相似文献
4.
Nuttapong Chentanez Miles Macklin Matthias Müller Stefan Jeschke Tae-Yong Kim 《Computer Graphics Forum》2020,39(8):123-134
We introduce a triangle mesh based convolutional neural network. The proposed network structure can be used for problems where input and/or output are defined on a manifold triangle mesh with or without boundary. We demonstrate its applications in cloth upsampling, adding back details to Principal Component Analysis (PCA) compressed cloth, regressing clothing deformation from character poses, and regressing hand skin deformation from bones' joint angles. The data used for training in this work are generated from high resolution extended position based dynamics (XPBD) physics simulations with small time steps and high iteration counts and from an offline FEM simulator, but it can come from other sources. The inference time of our prototype implementation, depending on the mesh resolution and the network size, can provide between 4 to 134 times faster than a GPU based simulator. The inference also only needs to be done for meshes currently visible by the camera. 相似文献
5.
In this paper, we articulate a novel plastic phase-field (PPF) method that can tightly couple the phase-field with plastic treatment to efficiently simulate ductile fracture with GPU optimization. At the theoretical level of physically-based modeling and simulation, our PPF approach assumes the fracture sensitivity of the material increases with the plastic strain accumulation. As a result, we first develop a hardening-related fracture toughness function towards phase-field evolution. Second, we follow the associative flow rule and adopt a novel degraded von Mises yield criterion. In this way, we establish the tight coupling of the phase-field and plastic treatment, with which our PPF method can present distinct elastoplasticity, necking, and fracture characteristics during ductile fracture simulation. At the numerical level towards GPU optimization, we further devise an advanced parallel framework, which takes the full advantages of hierarchical architecture. Our strategy dramatically enhances the computational efficiency of preprocessing and phase-field evolution for our PPF with the material point method (MPM). Based on our extensive experiments on a variety of benchmarks, our novel method's performance gain can reach 1.56× speedup of the primary GPU MPM. Finally, our comprehensive simulation results have confirmed that this new PPF method can efficiently and realistically simulate complex ductile fracture phenomena in 3D interactive graphics and animation. 相似文献
6.
We propose an end-to-end trained neural network architecture to robustly predict the complex dynamics of fluid flows with high temporal stability. We focus on single-phase smoke simulations in 2D and 3D based on the incompressible Navier-Stokes (NS) equations, which are relevant for a wide range of practical problems. To achieve stable predictions for long-term flow sequences with linear execution times, a convolutional neural network (CNN) is trained for spatial compression in combination with a temporal prediction network that consists of stacked Long Short-Term Memory (LSTM) layers. Our core contribution is a novel latent space subdivision (LSS) to separate the respective input quantities into individual parts of the encoded latent space domain. As a result, this allows to distinctively alter the encoded quantities without interfering with the remaining latent space values and hence maximizes external control. By selectively overwriting parts of the predicted latent space points, our proposed method is capable to robustly predict long-term sequences of complex physics problems, like the flow of fluids. In addition, we highlight the benefits of a recurrent training on the latent space creation, which is performed by the spatial compression network. Furthermore, we thoroughly evaluate and discuss several different components of our method. 相似文献
7.
Zhaoming Xie Hung Yu Ling Nam Hee Kim Michiel van de Panne 《Computer Graphics Forum》2020,39(8):213-224
Humans are highly adept at walking in environments with foot placement constraints, including stepping-stone scenarios where footstep locations are fully constrained. Finding good solutions to stepping-stone locomotion is a longstanding and fundamental challenge for animation and robotics. We present fully learned solutions to this difficult problem using reinforcement learning. We demonstrate the importance of a curriculum for efficient learning and evaluate four possible curriculum choices compared to a non-curriculum baseline. Results are presented for a simulated humanoid, a realistic bipedal robot simulation and a monster character, in each case producing robust, plausible motions for challenging stepping stone sequences and terrains. 相似文献
8.
S. Ghorbani C. Wloka A. Etemad M. A. Brubaker N. F. Troje 《Computer Graphics Forum》2020,39(8):225-239
We present a probabilistic framework to generate character animations based on weak control signals, such that the synthesized motions are realistic while retaining the stochastic nature of human movement. The proposed architecture, which is designed as a hierarchical recurrent model, maps each sub-sequence of motions into a stochastic latent code using a variational autoencoder extended over the temporal domain. We also propose an objective function which respects the impact of each joint on the pose and compares the joint angles based on angular distance. We use two novel quantitative protocols and human qualitative assessment to demonstrate the ability of our model to generate convincing and diverse periodic and non-periodic motion sequences without the need for strong control signals. 相似文献
9.
We present a remeshing-free brittle fracture simulation method under the assumption of quasi-static linear elastic fracture mechanics (LEFM). To achieve this, we devise two algorithms. First, we develop an approximate volumetric simulation, based on the extended Finite Element Method (XFEM), to initialize and propagate Lagrangian crack-fronts. We model the geometry of fracture explicitly as a surface mesh, which allows us to generate high-resolution crack surfaces that are decoupled from the resolution of the deformation mesh. Our second contribution is a mesh cutting algorithm, which produces fragments of the input mesh using the fracture surface. We do this by directly operating on the half-edge data structures of two surface meshes, which enables us to cut general surface meshes including those of concave polyhedra and meshes with abutting concave polygons. Since we avoid triangulation for cutting, the connectivity of the resulting fragments is identical to the (uncut) input mesh except at edges introduced by the cut. We evaluate our simulation and cutting algorithms and show that they outperform state-of-the-art approaches both qualitatively and quantitatively. 相似文献
10.
This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly-shaped bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point method. Our approach results in minimal changes to existing simulators, and it allows us to re-use popular isotropic plasticity models like the Drucker-Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we wish to simulate. 相似文献
11.
Traditional 2D animation requires time and dedication since tens of thousands of frames need to be drawn by hand for a typical production. Many computer-assisted methods have been proposed to automatize the generation of inbetween frames from a set of clean line drawings, but they are all limited by a rigid workflow and a lack of artistic controls, which is in the most part due to the one-to-one stroke matching and interpolation problems they attempt to solve. In this work, we take a novel view on those problems by focusing on an earlier phase of the animation process that uses rough drawings (i.e., sketches). Our key idea is to recast the matching and interpolation problems so that they apply to transient embeddings, which are groups of strokes that only exist for a few keyframes. A transient embedding carries strokes between keyframes both forward and backward in time through a sequence of transformed lattices. Forward and backward strokes are then cross-faded using their thickness to yield rough inbetweens. With our approach, complex topological changes may be introduced while preserving visual motion continuity. As demonstrated on state-of-the-art 2D animation exercises, our system provides unprecedented artistic control through the non-linear exploration of movements and dynamics in real-time. 相似文献
12.
Jingwei Tang Byungsoo Kim Vinicius C. Azevedo Barbara Solenthaler 《Computer Graphics Forum》2023,42(2):161-173
Controlling fluid simulations is notoriously difficult due to its high computational cost and the fact that user control inputs can cause unphysical motion. We present an interactive method for deformation-based fluid control. Our method aims at balancing the direct deformations of fluid fields and the preservation of physical characteristics. We train convolutional neural networks with physics-inspired loss functions together with a differentiable fluid simulator, and provide an efficient workflow for flow manipulations at test time. We demonstrate diverse test cases to analyze our carefully designed objectives and show that they lead to physical and eventually visually appealing modifications on edited fluid data. 相似文献
13.
This paper proposes a novel method for simulating hyperelastic solids with Smoothed Particle Hydrodynamics (SPH). The proposed method extends the coverage of the state-of-the-art elastic SPH solid method to include different types of hyperelastic materials, such as the Neo-Hookean and the St. Venant-Kirchoff models. To this end, we reformulate an implicit integration scheme for SPH elastic solids into an optimization problem and solve the problem using a general-purpose quasi-Newton method. Our experiments show that the Limited-memory BFGS (L-BFGS) algorithm can be employed to efficiently solve our optimization problem in the SPH framework and demonstrate its stable and efficient simulations for complex materials in the SPH framework. Thanks to the nature of our unified representation for both solids and fluids, the SPH formulation simplifies coupling between different materials and handling collisions. 相似文献
14.
Many problems in computer graphics and vision can be formulated as a nonlinear least squares optimization problem, for which numerous off-the-shelf solvers are readily available. Depending on the structure of the problem, however, existing solvers may be more or less suitable, and in some cases the solution comes at the cost of lengthy convergence times. One such case is semi-sparse optimization problems, emerging for example in localized facial performance reconstruction, where the nonlinear least squares problem can be composed of hundreds of thousands of cost functions, each one involving many of the optimization parameters. While such problems can be solved with existing solvers, the computation time can severely hinder the applicability of these methods. We introduce a novel iterative solver for nonlinear least squares optimization of large-scale semi-sparse problems. We use the nonlinear Levenberg-Marquardt method to locally linearize the problem in parallel, based on its first-order approximation. Then, we decompose the linear problem in small blocks, using the local Schur complement, leading to a more compact linear system without loss of information. The resulting system is dense but its size is small enough to be solved using a parallel direct method in a short amount of time. The main benefit we get by using such an approach is that the overall optimization process is entirely parallel and scalable, making it suitable to be mapped onto graphics hardware (GPU). By using our minimizer, results are obtained up to one order of magnitude faster than other existing solvers, without sacrificing the generality and the accuracy of the model. We provide a detailed analysis of our approach and validate our results with the application of performance-based facial capture using a recently-proposed anatomical local face deformation model. 相似文献
15.
16.
Dense dynamic aggregates of similar elements are frequent in natural phenomena and challenging to render under full real time constraints. The optimal representation to render them changes drastically depending on the distance at which they are observed, ranging from sets of detailed textured meshes for near views to point clouds for distant ones. Our multiscale representation use impostors to achieve the mid-range transition from mesh-based to point-based scales. To ensure a visual continuum, the impostor model should match as closely as possible the mesh on one side, and reduce to a single pixel response that equals point rendering on the other. In this paper, we propose a model based on rich spherical impostors, able to combine precomputed as well as dynamic procedural data, and offering seamless transitions from close instanced meshes to distant points. Our approach is architectured around an on-the-fly discrimination mechanism and intensively exploits the rough spherical geometry of the impostor proxy. In particular, we propose a new sampling mechanism to reconstruct novel views from the precomputed ones, together with a new conservative occlusion culling method, coupled with a two-pass rendering pipeline leveraging early-Z rejection. As a result, our system scales well and is even able to render sand, while supporting completely dynamic stackings. 相似文献
17.
Soojin Choi Seokpyo Hong Kyungmin Cho Chaelin Kim Junyong Noh 《Computer Graphics Forum》2023,42(2):13-24
In avatar-mediated telepresence systems, a similar environment is assumed for involved spaces, so that the avatar in a remote space can imitate the user's motion with proper semantic intention performed in a local space. For example, touching on the desk by the user should be reproduced by the avatar in the remote space to correctly convey the intended meaning. It is unlikely, however, that the two involved physical spaces are exactly the same in terms of the size of the room or the locations of the placed objects. Therefore, a naive mapping of the user's joint motion to the avatar will not create the semantically correct motion of the avatar in relation to the remote environment. Existing studies have addressed the problem of retargeting human motions to an avatar for telepresence applications. Few studies, however, have focused on retargeting continuous full-body motions such as locomotion and object interaction motions in a unified manner. In this paper, we propose a novel motion adaptation method that allows to generate the full-body motions of a human-like avatar on-the-fly in the remote space. The proposed method handles locomotion and object interaction motions as well as smooth transitions between them according to given user actions under the condition of a bijective environment mapping between morphologically-similar spaces. Our experiments show the effectiveness of the proposed method in generating plausible and semantically correct full-body motions of an avatar in room-scale space. 相似文献
18.
By-example aperiodic tilings are popular texture synthesis techniques that allow a fast, on-the-fly generation of unbounded and non-periodic textures with an appearance matching an arbitrary input sample called the “exemplar”. But by relying on uniform random sampling, these algorithms fail to preserve the autocovariance function, resulting in correlations that do not match the ones in the exemplar. The output can then be perceived as excessively random. In this work, we present a new method which can well preserve the autocovariance function of the exemplar. It consists in fetching contents with an importance sampler taking the explicit autocovariance function as the probability density function (pdf) of the sampler. Our method can be controlled for increasing or decreasing the randomness aspect of the texture. Besides significantly improving synthesis quality for classes of textures characterized by pronounced autocovariance functions, we moreover propose a real-time tiling and blending scheme that permits the generation of high-quality textures faster than former algorithms with minimal downsides by reducing the number of texture fetches. 相似文献
19.
In the past few years, advances in graphics hardware have fuelled an explosion of research and development in the field of interactive and real-time rendering in screen space. Following this trend, a rapidly increasing number of applications rely on multifragment rendering solutions to develop visually convincing graphics applications with dynamic content. The main advantage of these approaches is that they encompass additional rasterised geometry, by retaining more information from the fragment sampling domain, thus augmenting the visibility determination stage. With this survey, we provide an overview of and insight into the extensive, yet active research and respective literature on multifragment rendering. We formally present the multifragment rendering pipeline, clearly identifying the construction strategies, the core image operation categories and their mapping to the respective applications. We describe features and trade-offs for each class of techniques, pointing out GPU optimisations and limitations and provide practical recommendations for choosing an appropriate method for each application. Finally, we offer fruitful context for discussion by outlining some existing problems and challenges as well as by presenting opportunities for impactful future research directions. 相似文献
20.
Markus Schütz Gottfried Mandlburger Johannes Otepka Michael Wimmer 《Computer Graphics Forum》2020,39(2):51-64
Research in rendering large point clouds traditionally focused on the generation and use of hierarchical acceleration structures that allow systems to load and render the smallest fraction of the data with the largest impact on the output. The generation of these structures is slow and time consuming, however, and therefore ill-suited for tasks such as quickly looking at scan data stored in widely used unstructured file formats, or to immediately display the results of point-cloud processing tasks. We propose a progressive method that is capable of rendering any point cloud that fits in GPU memory in real time, without the need to generate hierarchical acceleration structures in advance. Our method supports data sets with a large amount of attributes per point, achieves a load performance of up to 100 million points per second, displays already loaded data in real time while remaining data is still being loaded, and is capable of rendering up to one billion points using an on-the-fly generated shuffled vertex buffer as its data structure, instead of slow-to-generate hierarchical structures. Shuffling is done during loading in order to allow efficiently filling holes with random subsets, which leads to a higher quality convergence behavior. 相似文献