首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many domains, multivariate event sequence data is collected focused around an entity (the case). Typically, each event has multiple attributes, for example, in healthcare a patient has events such as hospitalization, medication, and surgery. In addition to the multivariate events, also the case (a specific attribute, e.g., patient) has associated multivariate data (e.g., age, gender, weight). Current work typically only visualizes one attribute per event (label) in the event sequences. As a consequence, events can only be explored from a predefined case-centric perspective. However, to find complex relations from multiple perspectives (e.g., from different case definitions, such as doctor), users also need an event- and attribute-centric perspective. In addition, support is needed to effortlessly switch between and within perspectives. To support such a rich exploration, we present FlexEvent: an exploration and analysis method that enables investigation beyond a fixed case-centric perspective. Based on an adaptation of existing visualization techniques, such as scatterplots and juxtaposed small multiples, we enable flexible switching between different perspectives to explore the multivariate event sequence data needed to answer multi-perspective hypotheses. We evaluated FlexEvent with three domain experts in two use cases with sleep disorder and neonatal ICU data that show our method facilitates experts in exploring and analyzing real-world multivariate sequence data from different perspectives.  相似文献   

2.
In order to ensure sustainability, fishing operations are governed by many rules and regulations that restrict the use of certain techniques and equipment, specify the species and size offish that can be harvested, and regulate commercial activities based on licensing schemes. As the world's second largest exporter offish and seafood products, Norway invests a significant amount of effort into maintaining natural ecosystem dynamics by ensuring compliance with its constantly evolving science-based regulatory body. This paper introduces VA-TRAC, a geovisual analytics application developed in collaboration with the Norwegian Directorate of Fisheries in order to address this complex task. Our approach uses automatic methods to identify possible catch operations based on fishing vessel trajectories, embedded in an interactive web-based visual interface used to explore the results, compare them with licensing information, and incorporate the analysts’ domain knowledge into the decision making process. We present a data and task analysis based on a close collaboration with domain experts, and the design and implementation of VA-TRAC to address the identified requirements.  相似文献   

3.
    
In this paper, we present an integrated visual analytics approach to support the parametrization and exploration of flow visualization based on the finite-time Lyapunov exponent. Such visualization of time-dependent flow faces various challenges, including the choice of appropriate advection times, temporal regions of interest, and spatial resolution. Our approach eases these challenges by providing the user with context by means of parametric aggregations, with support and guidance for a more directed exploration, and with a set of derived measures for better qualitative assessment. We demonstrate the utility of our approach with examples from computation fluid dynamics and time-dependent dynamical systems.  相似文献   

4.
    
Handling emergencies requires efficient and effective collaboration of medical professionals. To analyze their performance, in an application study, we have developed VisCoMET, a visual analytics approach displaying interactions of healthcare personnel in a triage training of a mass casualty incident. The application scenario stems from social interaction research, where the collaboration of teams is studied from different perspectives. We integrate recorded annotations from multiple sources, such as recorded videos of the sessions, transcribed communication, and eye-tracking information. For each session, an information-rich timeline visualizes events across these different channels, specifically highlighting interactions between the team members. We provide algorithmic support to identify frequent event patterns and to search for user-defined event sequences. Comparing different teams, an overview visualization aggregates each training session in a visual glyph as a node, connected to similar sessions through edges. An application example shows the usage of the approach in the comparative analysis of triage training sessions, where multiple teams encountered the same scene, and highlights discovered insights. The approach was evaluated through feedback from visualization and social interaction experts. The results show that the approach supports reflecting on teams' performance by exploratory analysis of collaboration behavior while particularly enabling the comparison of triage training sessions.  相似文献   

5.
Understanding the behavior of deep reinforcement learning agents is a crucial requirement throughout their development. Existing work has addressed the identification of observable behavioral patterns in state sequences or analysis of isolated internal representations; however, the overall decision-making of deep-learning RL agents remains opaque. To tackle this, we present VISITOR, a visual analytics system enabling the analysis of entire state sequences, the diagnosis of singular predictions, and the comparison between agents. A sequence embedding view enables the multiscale analysis of state sequences, utilizing custom embedding techniques for a stable spatialization of the observations and internal states. We provide multiple layers: (1) a state space embedding, highlighting different groups of states inside the state-action sequences, (2) a trajectory view, emphasizing decision points, (3) a network activation mapping, visualizing the relationship between observations and network activations, (4) a transition embedding, enabling the analysis of state-to-state transitions. The embedding view is accompanied by an interactive reward view that captures the temporal development of metrics, which can be linked directly to states in the embedding. Lastly, a model list allows for the quick comparison of models across multiple metrics. Annotations can be exported to communicate results to different audiences. Our two-stage evaluation with eight experts confirms the effectiveness in identifying states of interest, comparing the quality of policies, and reasoning about the internal decision-making processes.  相似文献   

6.
Computer-based technology has played a significant role in crime prevention over the past 30 years, especially with the popularization of spatial databases and crime mapping systems. Police departments frequently use hotspot analysis to identify regions that should be a priority in receiving preventive resources. Practitioners and researchers agree that tracking crime over time and identifying its geographic patterns are vital information for planning efficiently. Frequently, police departments have access to systems that are too complicated and excessively technical, leading to modest usage. By working closely together with domain experts from police agencies of two different countries, we identified and characterized five domain tasks inherent to the hotspot analysis problem and developed SHOC, a visualization tool that strives for simplicity and ease of use in helping users to perform all the domain tasks. SHOC is included in a visual analytics system that allows users without technical expertise to annotate, save, and share analyses. We also demonstrate that our system effectively supports the completion of the domain tasks in two different real-world case studies.  相似文献   

7.
Anticipation skill is important for elite racquet sports players. Successful anticipation allows them to predict the actions of the opponent better and take early actions in matches. Existing studies of anticipation behaviors, largely based on the analysis of in-lab behaviors, failed to capture the characteristics of in-situ anticipation behaviors in real matches. This research proposes a data-driven approach for research on anticipation behaviors to gain more accurate and reliable insight into anticipation skills. Collaborating with domain experts in table tennis, we develop a complete solution that includes data collection, the development of a model to evaluate anticipation behaviors, and the design of a visual analytics system called Tac-Anticipator. Our case study reveals the strengths and weaknesses of top table tennis players' anticipation behaviors. In a word, our work enriches the research methods and guidelines for visual analytics of anticipation behaviors.  相似文献   

8.
    
Design problems in engineering typically involve a large solution space and several potentially conflicting criteria. Selecting a compromise solution is often supported by optimization algorithms that compute hundreds of Pareto-optimal solutions, thus informing a decision by the engineer. However, the complexity of evaluating and comparing alternatives increases with the number of criteria that need to be considered at the same time. We present a design study on Pareto front visualization to support engineers in applying their expertise and subjective preferences for selection of the most-preferred solution. We provide a characterization of data and tasks from the parametric design of electric motors. The requirements identified were the basis for our development of PAVED, an interactive parallel coordinates visualization for exploration of multi-criteria alternatives. We reflect on our user-centered design process that included iterative refinement with real data in close collaboration with a domain expert as well as a summative evaluation in the field. The results suggest a high usability of our visualization as part of a real-world engineering design workflow. Our lessons learned can serve as guidance to future visualization developers targeting multi-criteria optimization problems in engineering design or alternative domains.  相似文献   

9.
    
Autonomous unmanned aerial vehicles are complex systems of hardware, software, and human input. Understanding this complexity is key to their development and operation. Information visualizations already exist for exploring flight logs but comprehensive analyses currently require several disparate and custom tools. This design study helps address the pain points faced by autonomous unmanned aerial vehicle developers and operators. We contribute: a spiral development process model for grounded evaluation visualization development focused on progressively broadening target user involvement and refining user goals; a demonstration of the model as part of developing a deployed and adopted visualization system; a data and task abstraction for developers and operators performing post-flight analysis of autonomous unmanned aerial vehicle logs; the design and implementation of Data Comets , an open-source and web-based interactive visualization tool for post-flight log analysis incorporating temporal, geospatial, and multivariate data; and the results of a summative evaluation of the visualization system and our abstractions based on in-the-wild usage. A free copy of this paper and source code are available at osf.io/h4p7g  相似文献   

10.
Dynamical systems are commonly used to describe the state of time-dependent systems. In many engineering and control problems, the state space is high-dimensional making it difficult to analyze and visualize the behavior of the system for varying input conditions. We present a novel dimensionality reduction technique that is tailored to high-dimensional dynamical systems. In contrast to standard general purpose dimensionality reduction algorithms, we use energy minimization to preserve properties of the flow in the high-dimensional space. Once the projection operator is optimized, further high-dimensional trajectories are projected easily. Our 3D projection maintains a number of useful flow properties, such as critical points and flow maps, and is optimized to match geometric characteristics of the high-dimensional input, as well as optional user constraints. We apply our method to trajectories traced in the phase spaces of second-order dynamical systems, including finite-sized objects in fluids, the circular restricted three-body problem and a damped double pendulum. We compare the projections with standard visualization techniques, such as PCA, t-SNE and UMAP, and visualize the dynamical systems with multiple coordinated views interactively, featuring a spatial embedding, projection to subspaces, our dimensionality reduction and a seed point exploration tool.  相似文献   

11.
Univariate visualizations like histograms, rug plots, or box plots provide concise visual summaries of distributions. However, each individual visualization may fail to robustly distinguish important features of a distribution, or provide sufficient information for all of the relevant tasks involved in summarizing univariate data. One solution is to juxtapose or superimpose multiple univariate visualizations in the same chart, as in Allen et al.'s [APW*19] “raincloud plots.” In this paper I examine the design space of raincloud plots, and, through a series of simulation studies, explore designs where the component visualizations mutually “defend” against situations where important distribution features are missed or trivial features are given undue prominence. I suggest a class of “defensive” raincloud plot designs that provide good mutual coverage for surfacing distributional features of interest.  相似文献   

12.
Euler diagrams are a popular technique to visualize set-typed data. However, creating diagrams using simple shapes remains a challenging problem for many complex, real-life datasets. To solve this, we propose RectEuler: a flexible, fully-automatic method using rectangles to create Euler-like diagrams. We use an efficient mixed-integer optimization scheme to place set labels and element representatives (e.g., text or images) in conjunction with rectangles describing the sets. By defining appropriate constraints, we adhere to well-formedness properties and aesthetic considerations. If a dataset cannot be created within a reasonable time or at all, we iteratively split the diagram into multiple components until a drawable solution is found. Redundant encoding of the set membership using dots and set lines improves the readability of the diagram. Our web tool lets users see how the layout changes throughout the optimization process and provides interactive explanations. For evaluation, we perform quantitative and qualitative analysis across different datasets and compare our method to state-of-the-art Euler diagram generation methods.  相似文献   

13.
    
Problem-solving dynamics refers to the process of solving a series of problems over time, from which a student's cognitive skills and non-cognitive traits and behaviors can be inferred. For example, we can derive a student's learning curve (an indicator of cognitive skill) from the changes in the difficulty level of problems solved, or derive a student's self-regulation patterns (an example of non-cognitive traits and behaviors) based on the problem-solving frequency over time. Few studies provide an integrated overview of both aspects by unfolding the problem-solving process. In this paper, we present a visual analytics system named SeqDynamics that evaluates students ‘problem-solving dynamics from both cognitive and non-cognitive perspectives. The system visualizes the chronological sequence of learners’ problem-solving behavior through a set of novel visual designs and coordinated contextual views, enabling users to compare and evaluate problem-solving dynamics on multiple scales. We present three scenarios to demonstrate the usefulness of SeqDynamics on a real-world dataset which consists of thousands of problem-solving traces. We also conduct five expert interviews to show that SeqDynamics enhances domain experts’ understanding of learning behavior sequences and assists them in completing evaluation tasks efficiently.  相似文献   

14.
    
In this paper, we introduce Canis, a high-level domain-specific language that enables declarative specifications of data-driven chart animations. By leveraging data-enriched SVG charts, its grammar of animations can be applied to the charts created by existing chart construction tools. With Canis, designers can select marks from the charts, partition the selected marks into mark units based on data attributes, and apply animation effects to the mark units, with the control of when the effects start. The Canis compiler automatically synthesizes the Lottie animation JSON files [Aira], which can be rendered natively across multiple platforms. To demonstrate Canis’ expressiveness, we present a wide range of chart animations. We also evaluate its scalability by showing the effectiveness of our compiler in reducing the output specification size and comparing its performance on different platforms against D3.  相似文献   

15.
Histopathology research quickly evolves thanks to advances in whole slide imaging (WSI) and artificial intelligence (AI). However, existing WSI viewers are tailored either for clinical or research environments, but none suits both. This hinders the adoption of new methods and communication between the researchers and clinicians. The paper presents xOpat, an open-source, browser-based WSI viewer that addresses these problems. xOpat supports various data sources, such as tissue images, pathologists' annotations, or additional data produced by AI models. Furthermore, it provides efficient rendering of multiple data layers, their visual representations, and tools for annotating and presenting findings. Thanks to its modular, protocol-agnostic, and extensible architecture, xOpat can be easily integrated into different environments and thus helps to bridge the gap between research and clinical practice. To demonstrate the utility of xOpat, we present three case studies, one conducted with a developer of AI algorithms for image segmentation and two with a research pathologist.  相似文献   

16.
    
Scatter plots are a powerful and well-established technique for visualizing the relationships between two variables as a collection of discrete points. However, especially when dealing with large and dense data, scatter plots often exhibit problems such as overplotting, making the data interpretation arduous. Density plots are able to overcome these limitations in highly populated regions, but fail to provide accurate information of individual data points. This is particularly problematic in sparse regions where the density estimate may not provide a good representation of the underlying data. In this paper, we present sunspot plots, a visualization technique that communicates dense data as a continuous data distribution, while preserving the discrete nature of data samples in sparsely populated areas. We furthermore demonstrate the advantages of our approach on typical failure cases of scatter plots within synthetic and real-world data sets and validate its effectiveness in a user study.  相似文献   

17.
Over the past years, an increasing number of publications in information visualization, especially within the field of visual analytics, have mentioned the term “embedding” when describing the computational approach. Within this context, embeddings are usually (relatively) low-dimensional, distributed representations of various data types (such as texts or graphs), and since they have proven to be extremely useful for a variety of data analysis tasks across various disciplines and fields, they have become widely used. Existing visualization approaches aim to either support exploration and interpretation of the embedding space through visual representation and interaction, or aim to use embeddings as part of the computational pipeline for addressing downstream analytical tasks. To the best of our knowledge, this is the first survey that takes a detailed look at embedding methods through the lens of visual analytics, and the purpose of our survey article is to provide a systematic overview of the state of the art within the emerging field of embedding visualization. We design a categorization scheme for our approach, analyze the current research frontier based on peer-reviewed publications, and discuss existing trends, challenges, and potential research directions for using embeddings in the context of visual analytics. Furthermore, we provide an interactive survey browser for the collected and categorized survey data, which currently includes 122 entries that appeared between 2007 and 2023.  相似文献   

18.
We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations, and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as well as its contribution to black box models interpretability and explain-ability in the field of visual analytics.  相似文献   

19.
Building effective classifiers requires providing the modeling algorithms with information about the training data and modeling goals in order to create a model that makes proper tradeoffs. Machine learning algorithms allow for flexible specification of such meta-information through the design of the objective functions that they solve. However, such objective functions are hard for users to specify as they are a specific mathematical formulation of their intents. In this paper, we present an approach that allows users to generate objective functions for classification problems through an interactive visual interface. Our approach adopts a semantic interaction design in that user interactions over data elements in the visualization are translated into objective function terms. The generated objective functions are solved by a machine learning solver that provides candidate models, which can be inspected by the user, and used to suggest refinements to the specifications. We demonstrate a visual analytics system QUESTO for users to manipulate objective functions to define domain-specific constraints. Through a user study we show that QUESTO helps users create various objective functions that satisfy their goals.  相似文献   

20.
The visual analytics community has long aimed to understand users better and assist them in their analytic endeavors. As a result, numerous conceptual models of visual analytics aim to formalize common workflows, techniques, and goals leveraged by analysts. While many of the existing approaches are rich in detail, they each are specific to a particular aspect of the visual analytic process. Furthermore, with an ever-expanding array of novel artificial intelligence techniques and advances in visual analytic settings, existing conceptual models may not provide enough expressivity to bridge the two fields. In this work, we propose an agent-based conceptual model for the visual analytic process by drawing parallels from the artificial intelligence literature. We present three examples from the visual analytics literature as case studies and examine them in detail using our framework. Our simple yet robust framework unifies the visual analytic pipeline to enable researchers and practitioners to reason about scenarios that are becoming increasingly prominent in the field, namely mixed-initiative, guided, and collaborative analysis. Furthermore, it will allow us to characterize analysts, visual analytic settings, and guidance from the lenses of human agents, environments, and artificial agents, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号