共查询到19条相似文献,搜索用时 86 毫秒
1.
研究一种基于源信号高阶统计信息的矩阵联合近似对角化独立元分析(JADE-ICA)方法,并将其应用于滚动轴承故障声发射(AE)信号的盲源分离。滚动轴承的声发射源信号一般具有衰减性和准周期性,多组信号间还具有时差性,信号被多个传感器接收。通过最大程度的联合近似对角化,可以使源信号与分离信号有效的一一对应,克服非线性和时差的影响;通过高阶统计的高斯噪声不敏感性可以有效抑制随机观测噪声对分离结果的影响。选用相关系数、二次残差、性能指数和频谱特征构成系列时频域评价指标对分离结果进行较为全面的验证。仿真结果证明了该方法的可行性和有效性。 相似文献
2.
疲劳剥落是引起滚动轴承失效的主要原因。跟振动信号一样,当滚道出现疲劳剥落故障时滚动体在进入和退出剥落区时的声发射信号也存在对应的两类不同冲击特征,称为双冲击现象。对双冲击特征的提取可实现双冲击间隔的有效测量。声发射信号具有对早期故障敏感、不易受噪声干扰等优点。采用将两类特征分离处理的方法,将声发射信号中两类冲击特征分为两部分,通过AR模型和最小熵解卷积滤波增强故障特征信号,和基于复Morlet小波的谱峭度图算法提取优化解调频带对应的包络信号,对包络信号相加并进行双冲击间隔测量。实验研究表明,该方法能够有效地分离出滚动轴承外圈疲劳剥落故障声发射信号中的双冲击特征。 相似文献
3.
4.
摘 要:为了简单有效地提取超声空化时频信息而估计空化强度,提出了应用基于全极点线性预测编码模型的共振峰分析方法进行分析,并使用其分析了19kHz超声作用下的空化场的声发射信号。将共振峰分析结果与常用的频谱分析和短时傅利叶分析结果进行了对比,发现共振峰分析方法更能从超声空化声发射信号的中提取出简单但关键的时频信息来。采用共振峰方法的分析结果表明,可以利用空化声发射的共振峰参数如基频频率和相对高频共振峰的幅值来分别反映超声空化的非线性振荡和瞬态空化,进而估计超声空化的强度。 相似文献
5.
结合显式有限元和小波包分析技术开展了拉索损伤声发射信号特征提取的仿真分析。采用ANSYS/LS-DYNA模拟得到拉索损伤声发射信号的仿真信号,基于小波包能量谱对拉索声发射的有限元仿真信号进行了特征提取,从小波包分解层次、特征频带数量的选择及特征参数的噪声鲁棒性三个方面开展了讨论分析。结果表明:(1)通过选择适当的小波包分解层次,小波包能量谱可以精细地反映信号的特征;(2)选取少数特征频带就能使得小波包能量谱反映声发射信号的特征信息;(3)基于小波包能量谱的特征参数具有良好的损伤敏感性及噪声鲁棒性,能在强噪声影响下实现对拉索不同损伤类型的判别。 相似文献
6.
基于EMD的胶合板损伤声发射信号特征提取及神经网络模式识别 总被引:2,自引:0,他引:2
摘要:针对胶合板损伤声发射信号的非平稳性和损伤类别特征相互重叠的实际情况,提出了基于经验模态分解(Empirical Mode Decomposition, EMD)和BP神经网络相结合的信号特征提取和识别方法。首先对损伤声发射信号进行EMD分解,筛选出包含主要信息的本征模态函数(Intrinsic Mode Function, IMF)分量;其次构建以各IMF分量的能量占比作为表征各损伤信号的特征向量;最后以提取的特征向量为输入样本,建立BP神经网络模式分类器对四类胶合板损伤信号进行识别。五层胶合板损伤的实测数据表明,该方法能够准确地提取出声发射信号特征并对其损伤类型进行有效地识别。 相似文献
7.
煤粉粒径的测量是燃煤电站一项重要的工作。针对目前筛分法存在的缺点,提出了一种结合声发射信号与BP神经网络在线识别煤粉粒径的方法。在频域中对噪声信号与煤粉声发射信号进行比较,确定了信号中反映煤粉粒径的频率区间,并利用小波包置零方法对信号进行去噪,在信噪比与信号平滑度方面比较了几种常用小波函数的去噪效果。通过功率谱分析发现了信号能量随煤粉粒径的变化特征。最后提取信号能量特征,利用BP神经网络对煤粉粒径进行识别。研究结果表明,结合声发射信号与BP神经网络识别煤粉粒径,可以获得良好的效果。 相似文献
8.
针对轴承故障成分常以周期性冲击成分出现在振动信号中,而冲击响应成分常被强大噪声淹没,造成轴承故障特征提取困难等问题,将集成经验模态分解(EEMD)与改进形态滤波方法相结合,在本征模态函数(IMF)及形态学结构元素(SE)选取时均以峭度准则为依据,对筛选出的IMF分量进行信号重构后,再进行基于峭度准则的改进形态滤波方法处理。结果表明,该方法可避免共振解调中中心频率及滤波频带选取,自适应性较好;通过对实际滚动轴承内外圈故障分析,该方法可清晰准确提取到故障特征信息,噪声抑制效果好,可用于轴承故障精确诊断。 相似文献
9.
为了去除声发射信号中的随机噪声与脉冲干扰,提高有用信号质量,提出了一种中值滤波与奇异值分解相结合的降噪方法。该方法首先对原始声发射信号进行中值滤波,去除幅值较大的异常值,其次对去除异常值的信号序列进行相空间重构和奇异值分解,最后针对难以确定重构阶数这一问题,提出奇异值能量差分谱概念,并利用能量差分谱的较大峰值位置来确定奇异值的重构阶数,以实现降噪。数值仿真和五层胶合板脱胶和表板断裂测试的实测数据分析表明,该方法能够有效地保留原有信号的特征,并能最大限度地消除噪声,提高信噪比 相似文献
10.
为了将声发射技术应用在金属塑性加工中的摩擦监测中,以SPCC钢在拉伸过程与相对运动速度为100mm/min、正压力为7.5kg的摩擦过程产生的声发射信号特征为研究对象,分别用数据统计、平均值等方法对比分析了两种声发射信号的能量、振铃计数、幅度等参数。实验结果表明:SPCC钢拉伸的声发射能量值要远小于摩擦声发射能量值;拉伸的声发射振铃计数分布范围要略大于摩擦声发射振铃计数分布范围;拉伸的声发射幅度要小于摩擦声发射的幅度。最后对出现该现象的原因进行了探讨。 相似文献
11.
在旋转机械故障诊断中,声发射信号极易受到噪声的干扰。针对经验模态分解(EMD)易产生模态混叠现象,提出了一种基于经验小波变换(Empirical Wavelet Transform,EWT)的消噪和旋转机械声发射碰摩故障诊断的方法。利用了EMD和小波变换的优点,通过对傅里叶频谱进行自适应划分,并构建小波滤波器组来提取声发射信号所包含的不同固有模态分量,可有效消除模态混叠现象,同时对分量进行Hilbert变换从而实现声发射信号的消噪和故障诊断。采用该方法对仿真信号进行加噪声和消噪处理,在同信号源下,对比基于d B4全阈值消噪、d B4默认软阈值消噪、d B4对高频系数处理消噪和EMD消噪效果。并将该方法应用到实际的声发射碰摩信号中。仿真和实验分析结果表明:EWT方法可以有效地分解出信号的固有模态,分解出的模态少,并且不存在难以解释的虚假模态,消噪效果优于其他方法,并且在声发射故障诊断中也有较大的优势。 相似文献
12.
轴承故障会导致振动信号中出现冲击响应成分,可通过对冲击响应成分的周期的检测与提取, 进行局部故障诊断。但在复杂工况下,故障脉冲易被周围噪声淹没,在分析EEMD和形态学滤波方法的基础上,将EEMD方法与形态学滤波方法相结合,提出结构元素(SE)选择方法,并用于本征模态信号中冲击响应特征的提取。通过将该方法用于轴承外圈、内圈局部故障状态下的特征的检测,结果表明该方法能有效提取周期性脉冲成分并抑制噪声。 相似文献
13.
14.
通过分析典型声发射信号及其特征提取,将小波尺度谱引入到声发射故障诊断领域,首次提出了声发射信号的小波尺度谱分析法。给出了小波基函数及其参数的选取,克服了声发射信号小波尺度谱的时、频分辨率不能同时达到最好的缺陷。将小波尺度谱用于声发射检测的滚动轴承损伤类型及部件的识别,诊断结果十分直观、清晰、准确。仿真分析和实验研究均表明小波尺度谱能有效应用于基于声发射技术的状态监测与故障诊断。 相似文献
15.
针对滚动轴承故障信号非平稳非线性且易受背景噪声干扰的特点,结合深度学习的优势,提出了一种基于卷积神经网络(CNN)的滚动轴承故障诊断法。将不同故障下多个传感器测得的1维(1D)振动信号转化为2维(2D)灰度图像作为网络输入,并将其分为训练集和测试集;将训练集输入卷积神经网络进行训练,自动提取其中的特征;测试集被用于验证学习完毕的网络的有效性,实现滚动轴承故障识别。该方法不依赖于人为经验和信号处理技术进行预先的信号特征提取,实验数据分析表明,相比于经典的支持向量机和概率神经网络方法,提出的方法识别准确率更高且更稳定。 相似文献
16.
17.
18.
时域平均常用于提取旋转机械振动信号的故障特征,但当旋转机械出现早期故障时,背景噪声常会使该方法失效,当旋转机械存在多种故障时,亦不能有效的分辨。通过比较分析小波变换、Hilbert-Huang变换和多分辨分析的Hilbert-Huang变换,在分析时域平均的基础上,提出了多分辨分析的经验模态分解方法(Multi-resolution Empirical Mode Decomposition ,MEMD)与频域几何平均相结合的诊断新方法。工程实例的应用结果表明,所提出的方法能有效地实现齿轮早期故障诊断。 相似文献
19.
阶比分析是实现变转速工况下旋转机械设备故障特征提取的主要方法之一,其核心在于转速信息的准确获取,传统阶比分析方法主要通过转速计等设备测得转速,成本高且抗噪性差,而基于时频分析的转速估计方法操作简单,鲁棒性和准确性也较好。提出了一种基于时频挤压的转频估计方法,该方法不依赖多余设备,通过时频挤压和重采样阶比分析,实现转频估计和特征提取,从而诊断轴承故障。将基于传统时频方法与所提方法得到的分析结果以及计算阶比分析结果三者进行比较,以验证所提方法的可行性与有效性,仿真和实验信号分析结果均表明,所提方法的时频聚集性和鲁棒性较传统方法更好,且在无转速计的情况下,分析结果精度也更高。 相似文献