首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autothermal reforming (ATR) has several advantages for fuel cell applications, such as a compact reactor structure and fast response. Using oxidation reactions inside the reactor, ATR does not have the external heat transfer limitations associated with steam reforming. However, mass and heat transfer limitations inside and outside the catalyst particles are still anticipated. In this study, transport limitations in the steam reforming section of ATR over a Pt/Gd-doped ceria catalyst are analyzed by numerical simulations based on a reaction rate equation in which parameters are adjusted to measured kinetic data. The simulation results show that significant transport limitations characterize the steam reforming section of packed-bed ATR reactors. The activity per catalyst bed volume is highly dependent on the particle size, and only the thin exterior layer of the particles is involved in catalyzing the reactions. Based on the results, it is shown that an eggshell type catalyst particle could reduce catalyst material significantly without a considerable decline in the activity per catalyst bed volume.  相似文献   

2.
Efficient conversion of methane to hydrogen has emerged as a significant challenge to realizing fuel cell-based energy systems. Autothermal microchannel reactors, coupling of exothermic and endothermic reactions in parallel channels, have become one of the most promising technologies in the field of hydrogen production. Such reactors were utilized as an intensified design for conducting the endothermic steam methane reforming reaction. The energy required by the endothermic process is supplied directly through the separating plates of the reactor structure from the exothermic process occurring on the opposing side. Optimal design problems associated with transport phenomena in such an autothermal system were analyzed. Various methods for designing and operating autothermal reactors employed in steam methane reforming were discussed. Computational fluid dynamics simulations were performed to identify the underlying principles of process intensification, and to delineate several design and operational features of the intensified reforming process. The results indicated that the autothermal reactor is preferable to be thermally conductive to ensure its structural integrity and maximum operating regime. However, the thermal properties of the reactor structure are not essential due to efficient heat transfer existing between endothermic and exothermic process streams. A reactor design which minimizes the mass transfer resistance is highly required, and the channel dimension is of critical importance. Furthermore, the challenges presented by the efficient operation of the autothermal system were identified, along with demonstrating the implementation of transport management in order to improve overall reactor performance and to mitigate extreme temperature excursions.  相似文献   

3.
The study compares the performance of different pathways for gas-phase (non-catalytic) fuel reforming between 600 and 1000 °C. Specifically, the conversion of propane to hydrogen-rich syngas was investigated numerically and experimentally for pyrolysis (Py), steam reforming (SR), partial oxidation (POx), and autothermal reforming (ATR). Experiments were conducted in a tubular quartz reactor, where temperatures were imposed externally; reactants were diluted with nitrogen to reduce the impact of endothermic/exothermic reactions on the variation of gas-phase temperatures. In experiments, product concentrations of hydrogen, carbon monoxide, carbon dioxide, methane, and a range of hydrocarbon species were measured at predetermined operating conditions. The performance of each homogeneous reforming process was evaluated and compared by assessing propane conversion and production efficiencies for hydrogen and other species of interest. At 600 °C, propane conversion was low, but increased substantially with temperature; complete conversion was achieved at 1000 °C. Furthermore, findings show improved hydrogen production efficiencies of POx/ATR when compared to Py/SR. Experimental results are substantiated by numerical simulations with detailed chemical kinetics; numerical results are in good agreement with experiments at identical operating conditions. Experimental and numerical results for non-catalytic propane reforming at all tested temperatures (600–1000 °C) imply a negligible impact of steam addition to the process, as results for SR resemble Py results, and ATR closely follows POx characteristics. As such, results clearly show that steam does not play an active role in gas-phase reforming of propane at intermediate temperatures.  相似文献   

4.
This study presents a thermodynamic analysis of hydrogen production from an autothermal reforming of crude glycerol derived from a biodiesel production process. As a composition of crude glycerol depends on feedstock and processes used in biodiesel production, a mixture of glycerol and methanol, major components in crude glycerol, at different ratios was used to investigate its effect on the autothermal reforming process. Equilibrium compositions of reforming gas obtained were determined as a function of temperature, steam to crude glycerol ratio, and oxygen to crude glycerol ratio. The results showed that at isothermal condition, raising operating temperature increases hydrogen yield, whereas increasing steam to crude glycerol and oxygen to crude glycerol ratios causes a reduction of hydrogen concentration. However, high temperature operation also promotes CO formation which would hinder the performance of low-temperature fuel cells. The steam to crude glycerol ratio is a key factor to reduce the extent of CO but a dilution effect of steam should be considered if reforming gas is fed to fuel cells. An increase in the ratio of glycerol to methanol in crude glycerol can increase the amount of hydrogen produced. In addition, an optimal operating condition of glycerol autothermal reforming at a thermoneutral condition that no external heat to sustain the reformer operation is required, was investigated.  相似文献   

5.
Thermodynamic analysis of hydrogen production by steam reforming and autothermal reforming of bio-butanol was investigated for solid oxide fuel cell applications. The effects of reformer operating conditions, e.g., reformer temperature, steam to carbon molar ratio, and oxygen to carbon molar ratio, were investigated with the objective to maximize hydrogen production and to reduce utility requirements of the process and based on which favorable conditions of reformer were proposed. Process flow diagram for steam reforming and autothermal reforming integrated with solid oxide fuel cell was developed. Heat integration with pinch analysis method was carried out for both the processes at favorable reformer conditions. Power generation, electrical efficiency, useful energy for co-generation application, and utility requirements for both the processes were compared.  相似文献   

6.
The vegetable oils are one of the promising renewable feedstock for production of hydrogen suitable for application in hydrogen based fuel cells for electrical power generation. In the present work, a thermodynamic equilibrium analysis of steam reforming (SR) and autothermal steam reforming (ATSR) of vegetable oils to synthesis gas was investigated by Gibbs free energy minimization method. The thermodynamic equilibrium analysis was performed considering the vegetable oils as a mixture of triglycerides containing three same fatty acid groups in the structure. The property method used for equilibrium analysis was first regressed using available physical and chemical properties of the considered triglycerides. The regressed property method was then used to calculate the equilibrium products composition. The effects of various parameters of SR of vegetable oils, temperature and steam-to-carbon ratio (SCR), on hydrogen yield and selectivity of CO and methane was studied in a broad range of temperature (573-1273 K) and SCRs (1-6). The optimum conditions for SR of vegetable oils were then determined for maximum hydrogen yield with very low selectivity of methane. The thermodynamic equilibrium analysis of ATSR of vegetable oils was then performed at different oxygen-to-carbon ratios and thermoneutral conditions were then determined for various operating conditions.  相似文献   

7.
This work presents a simulative energy efficiency analysis performed on fuel processor – PEMFC systems, considering methane as fuel and steam reforming or autothermal reforming as processes to produce hydrogen. Computation of energy efficiency takes into account the power required by the auxiliary units, coupling of the fuel processor with the fuel cell as well as heat recovery and integration.  相似文献   

8.
In this paper the production of ultra-pure hydrogen via autothermal reforming of ethanol in a fluidized bed membrane reactor has been studied. The heat needed for the steam reforming of ethanol is obtained by burning part of the hydrogen recovered via the hydrogen perm-selective membrane thereby integrating CO2 capture. Simulation results based on a phenomenological model show that it is possible to obtain overall autothermal reforming of ethanol while 100% of hydrogen can in principle be recovered at relatively high temperatures and at high reaction pressures. At the same operating conditions, ethanol is completely converted, while the methane produced by the reaction is completely reformed to CO, CO2 and H2.  相似文献   

9.
The article explores the thermodynamics of an alternate hydrogen generation process - dry autothermal reforming and its comparison to autothermal reforming process of isooctane for use in gasoline fuel processors for SOFC. A thermodynamic analysis of isooctane as feed hydrocarbon for autothermal reforming and dry autothermal reforming processes for feed OCIR (oxygen to carbon in isooctane ratio) from 0.5 to 0.7 at 1 bar pressure under analogous thermoneutral operating conditions was done using Gibbs free energy minimization algorithm in HSC Chemistry. The trends in thermoneutral points (TNP), important product gas compositions at TNPs and fuel processor energy requirements were compared and analyzed. Dry autothermal reforming was identified as a less energy consuming alternative to autothermal reforming as the syngas can be produced with lower energy requirements at thermoneutral temperatures, making it a promising candidate for use in gasoline fuel processors to power the solid oxide fuel cells. The dry autothermal reforming process for syngas production can also be used for different fuels.  相似文献   

10.
From a technical and economic point of view, autothermal steam reforming offers many advantages, as it minimizes heat load demand in the reformer. Bio-oil, the liquid product of biomass pyrolysis, can be effectively converted to a hydrogen-rich stream. Autothermal steam reforming of selected compounds of bio-oil was investigated using thermodynamic analysis. Equilibrium calculations employing Gibbs free energy minimization were performed for acetic acid, acetone and ethylene glycol in a broad range of temperature (400–1300 K), steam to fuel ratio (1–9) and pressure (1–20 atm) values. The optimal O2/fuel ratio to achieve thermoneutral conditions was calculated under all operating conditions. Hydrogen-rich gas is produced at temperatures higher than 700 K with the maximum yield attained at 900 K. The ratio of steam to fuel and the pressure determine to a great extent the equilibrium hydrogen concentration. The heat demand of the reformer, as expressed by the required amount of oxygen, varies with temperature, steam to fuel ratio and pressure, as well as the type of oxygenate compound used. When the required oxygen enters the system at the reforming temperature, autothermal steam reforming results in hydrogen yield around 20% lower than the yield by steam reforming because part of the organic feed is consumed in the combustion reaction. Autothermicity was also calculated for the whole cycle, including preheating of the organic feed to the reactor temperature and the reforming reaction itself. The oxygen demand in such a case is much higher, while the amount of hydrogen produced is drastically reduced.  相似文献   

11.
In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kWe self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH4 as a fuel with the addition of sufficient steam feeds (H2O/CH4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H2S to a sufficient level to allow for the operation of SOFCs.  相似文献   

12.
The methane dry-reforming and steam reforming reactions were studied as a function of pressure (1–20 atm) at 973 K in conventional packed-bed reactors and a membrane reactors. For the dry-reforming reaction in a conventional reactor the production yield of hydrogen rose and then decreased with increasing pressure as a result of the reverse water-gas shift reaction in which the hydrogen reacted with the reactant CO2 to produce water. For the steam reforming reaction the production yield of hydrogen kept increasing with pressure because the forward water-gas shift reaction produced additional hydrogen by the reaction of CO with water. In the membrane reactors the methane conversion and the hydrogen production yields were higher for both the dry-reforming and steam reforming reactions, but for the dry reforming at high pressure half of the hydrogen was transformed into water. Thus, the dry-reforming reaction is not practical for producing hydrogen.  相似文献   

13.
Three-dimensional numerical simulations were performed to address the thermal management issues associated with the design of a methanol reforming microchannel reactor for the portable production of hydrogen. The design of the reactor was fundamentally related to the direct coupling of reforming and combustion reactions by performing them on opposite sides of dividing walls in a parallel flow configuration. Effective autothermal operation was achieved through a combination of microchannel reactor technology with heat exchange in a direction perpendicular to the reacting fluid flow. Computational fluid dynamics simulations and thermodynamic analysis were carried out to investigate the effect of various design parameters on the characteristics of the generation, consumption, and exchange of thermal energy within the system. The results indicated that the ability to control temperature and temperature uniformity is of great importance to the performance of the system. The degree of temperature uniformity favorably affects the autothermal operation of the reactor. Temperature uniformity of the reactor can be improved by controlling the rate of heat transfer through a variety of factors such as wall thermal conductivity, fluid velocities, and dimensions. High wall thermal conductivity would be greatly beneficial to the performance of the system and the temperature uniformity of the reactor.  相似文献   

14.
This paper presents a thermodynamic study of a glycerol steam reforming process, with the aim of determining the optimal hydrogen production conditions for low- and high-temperature proton exchange membrane fuel cells (LT-PEMFCs and HT-PEMFCs). The results show that for LT-PEMFCs, the optimal temperature and steam to glycerol molar ratio of the glycerol reforming process (consisting of a steam reformer and a water gas shift reactor) are 1000 K and 6, respectively; under these conditions, the maximum hydrogen yield was obtained. Increasing the steam to glycerol ratio over its optimal value insignificantly enhanced the performance of the fuel processor. For HT-PEMFCs, to keep the CO content of the reformate gas within a desired range, the steam reformer can be operated at lower temperatures; however, a high steam to glycerol ratio is required. This requirement results in an increase in the energy consumption for steam generation. To determine the optimal conditions of glycerol steam reforming for HT-PEMFC, both the hydrogen yield and energy requirements were taken into consideration. The operational boundary of the glycerol steam reformer was also explored as a basic tool to design the reforming process for HT-PEMFC.  相似文献   

15.
In this study a numerical analysis of hydrogen production via an autothermal reforming reactor is presented. The endothermic reaction of steam methane reforming and the exothermic combustion of methane were activated with patterned Ni/Al2O3 catalytic layer and patterned Pt/Al2O3 catalytic layer, respectively. Aiming to achieve a more compacted process, a novel design of a reactor was proposed in which the reforming and the combustion catalysts were modeled as patterned thin layers. This configuration is analyzed and compared with two configurations. In the first configuration, the catalysts are modeled as continuous thin layers in parallel, while, in the second configuration the catalysts are modeled as continuous thin layers in series (conventional catalytic autothermal reactor). The results show that the pattern of the catalyst layers improves slightly the hydrogen yield, i.e. 3.6%. Furthermore, for the same concentration of hydrogen produced, the activated zone length can be decreased by 38% and 15% compared to the conventional catalytic autothermal reforming and the configuration where the catalysts are fitted in parallel, respectively. Besides, the oxygen consumption is lowered by 5%. The decrement of the catalyst amount and the oxygen feedstock in the novel studied design lead to lower costs and compact process.  相似文献   

16.
The Rh/Ce0·75Zr0·25O2–δ-ƞ-Al2O3/FeCrAl structured catalytic blocks of length 10, 20, and 60 mm were prepared and tested in the reactions of steam and autothermal reforming of n-hexadecane. It was found in a series of experiments on hexadecane steam reforming with the catalyst heating solely through the reactor wall that the complete conversion of hexadecane at a furnace temperature below 750 °C was not achieved even at GHSV = 10,000 h−1. Under these conditions, the formation of carbon on the catalyst surface was observed. At the reactor wall temperature of 800 °C, the complete conversion of hexadecane was achieved even in the 10 mm long catalytic block (GHSV = 60,000 h−1), accompanied by the formation of various intermediate light hydrocarbons. To achieve complete conversion of these intermediate compounds (mainly 1-alkenes), it is necessary to carry out the steam reforming reaction at GHSV = 10,000 h−1. At hexadecane autothermal reforming, heat is supplied to the reaction zone by exothermic oxidation reaction, which makes this process more efficient. In experiments with the use of additional external heat supply through the reactor wall, complete conversion of hexadecane occurred at GHSV = 120,000 h−1. To convert all by-products (mainly 1-alkenes) and achieve a nearly thermodynamic equilibrium distribution of the main reaction products (H2, CO, CO2), the reaction should be carried out at GHSV = 20,000 h−1. Without external heat supply, hexadecane conversion decreased, while the content of light hydrocarbons in the reaction products increased. An increase in the inlet amount of oxygen helps to compensate the heat losses in the reactor and to increase the efficiency of hexadecane autothermal reforming. The performed experiments allow better understanding of the processes which occur during the steam and autothermal reforming of diesel.  相似文献   

17.
In this paper, the authors present the first demonstration of a new class of integrated ceramic microchannel reactors for all-in-one reforming of hydrocarbon fuels. The reactor concept employs precision-machined metal distributors capable of realizing complex flow distribution patterns with extruded ceramic microchannel networks for cost-effective thermal integration of multiple chemical processes. The presently reported reactor is comprised of five methanol steam reforming channels packed with CuO/γ-Al2O3, interspersed with four methanol combustion channels washcoated with Pt/γ-Al2O3, for autothermal hydrogen production (i.e., without external heating). Results demonstrate the capability of this new device for integrating combustion and steam reforming of methanol for autothermal production of hydrogen, owing to the axially self-insulating nature of distributor-packaged ceramic microchannels. In the absence of any external insulation, stable reforming of methanol to hydrogen at conversions >90% and hydrogen yields >70% was achieved at a maximum reactor temperature of 400 °C, while simultaneously maintaining a packaging temperature <50 °C.  相似文献   

18.
In this work we report a simulative energy efficiency analysis performed on innovative fuel processor – PEM fuel cell systems in which hydrogen is produced via methane autothermal reforming, separated with a membrane unit coupled with a water gas shift reactor and then converted into electric energy by means of the PEM fuel cell.  相似文献   

19.
The increasing electrification of vehicles for passenger and heavy duty transport requires the deployment of efficient, low-emission power sources. Auxiliary Power Units (APUs) based on fuels cells offer an excellent solution, especially for supplying power during idling mode. For urban transport applications, gaseous hydrogen appears to be the best fuel option, whereas long-distance applications are better served by a liquid energy carrier. The autothermal reforming of liquid fuels such as diesel presents a simple and efficient method for producing hydrogen for fuel cell APUs. Heat integration for steam generation and air pre-warming are the key elements to a compact autothermal reformer design. With the aid of intense CFD simulations, a reformer construction was achieved with the high power density of 3.3 kWth/l. Experimental validation indicates high hydrogen concentrations of between 32 and 36%, depending on diesel quality. In combination with already existing results, the newest autothermal reformer (ATR) generation enables the set-up of a complete APU system, fulfilling the U.S. Department of Energy (DOE) targets for fuel cell-based APUs.  相似文献   

20.
A recent techno-economic study (Spallina et al., Energy Conversion and Management 120: p. 257–273) showed that the membrane assisted chemical looping reforming (MA-CLR) technology can produce H2 with integrated CO2 capture at costs below that of conventional steam methane reforming. A key technical challenge related to MA-CLR is the achievement of reliable solids circulation between the air and fuel reactors at large scale under the high (>50 bar) operating pressures required for optimal performance. This work therefore presents process modelling and economic assessments of a simplified alternative; membrane assisted autothermal reforming (MA-ATR), that inherently avoids this technical challenge. The novelty of MA-ATR lies in replacing the MA-CLR air reactor with an air separation unit (ASU), thus avoiding the need for oxygen carrier circulation. The economic assessment found that H2 production from MA-ATR is only 1.5% more expensive than MA-CLR in the base case. The calculated cost of hydrogen (compressed to 150 bar) in the base case was 1.55 €/kg with a natural gas price of €6/GJ and an electricity price of €60/MWh. Both concepts show continued performance improvements with an increase in reactor pressure and temperature, while an optimum cost is achieved at about 2 bar H2 permeate pressure. Sensitivities to other variables such as financing costs, membrane costs, fuel and electricity prices are similar between MA-ATR and MA-CLR. Natural gas prices represent the most important sensitivity, while the sensitivity to membrane costs is relatively small at high reactor pressures. MA-ATR therefore appears to be a promising alternative to achieve competitive H2 production with CO2 capture if technical challenges significantly delay scale-up and deployment of MA-CLR technology. The key technical demonstration required before further MA-ATR scale-up is membrane longevity under the high reactor pressures and temperatures required to minimize the cost of hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号