首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioaugmentation is an attractive mechanism for reducing recalcitrant pollutants in sediments, especially if this technology could be applied in situ. To examine the potential effectiveness of a bioaugmentation strategy for PCB contamination, PCB dehalorespiring populations were inoculated into Baltimore Harbor sediment microcosms. A culture containing the two most predominant indigenous PCB dehalorespiring microorganisms and a culture containing a strain with a rare ortho dechlorination activity and a non-indigenous strain that attacks double-flanked chlorines, were inoculated into sediment microcosms amended with 2,2′,3,5,5′,6-hexachlorobiphenyl (PCB 151) and Aroclor 1260. Although we observed a similar reduction in the concentration of PCB 151 in all microcosms at day 300, a reduced lag time for dechlorination activity was observed only in the bioaugmented microcosms and the pattern of dechlorination was altered depending on the initial combination of microorganisms added. Dechlorination of Aroclor 1260 was most extensive when dehalorespiring microorganisms were added to sediment. Overall numbers of dehalorespiring microorganisms in both bioaugmented and non-bioaugmented microcosms increased 100- and 1000-fold with PCB 151 and Aroclor 1260, respectively, and they were sustained for the full 300 days of the experiments. The ability of bioaugmentation to redirect dechlorination reactions in the sediment microcosms indicates that the inoculated PCB dehalorespiring microorganisms effectively competed with the indigenous microbial populations and cooperatively enhanced or altered the specific pathways of PCB dechlorination. These observations indicate that bioaugmentation with PCB dehalorespiring microorganisms is a potentially tractable approach for in situ treatment of PCB impacted sites.  相似文献   

2.
In this study, the bioaugmentation of a sequencing batch reactor (SBR) for the treatment of reject water from wastewater treatment plant was evaluated. For the bioaugmentation step a product containing an enrichment of microorganisms from the Archaea domain was used to enhance the performance of the reactor for treating reject water. The experiment was carried out in two parallel lab-scale sequencing batch reactors. The first one (SBR A) was bioaugmented with a suspension of microorganisms from the Archaea domain, while the second reactor (SBR B) was not bioaugmented. The results here presented show that the SBR technology could sustain efficient NH 4 + –N and chemical oxyden demand removal rates and can be applied for the treatment of reject water. Moreover, the addition of microorganisms belonging to the Archaea domain improved the SBR overall operation, especially when the loading in the influent was increased. Administering Archaea to the reactor had also a positive effect on ammonia oxidation as well as on the nitrite removal.  相似文献   

3.
Flow-through aquifer columns packed with a middle layer of granular iron (Fe0) were used to study the applicability and limitations of bio-enhanced Fe0 barriers for the treatment of contaminant mixtures in groundwater. Concentration profiles along the columns showed extensive degradation of hexavalent chromium Cr(VI), nitrate, sulfate, and trichloroethene (TCE), mainly in the Fe0 layer. One column was bioaugmented with Shevanella algae BRY, an iron-reducing bacterium that could enhance Fe0 reactivity by reductive dissolution of passivating iron oxides. This strain did not enhance Cr(VI), which was rapidly reduced by iron, leaving little room for improvement by microbial participation. Nevertheless, BRY-enhanced nitrate removal (from 15% to 80%), partly because this strain has a wide range of electron acceptors, including nitrate. Sulfate was removed (55%) only in a column that was bioaugmented with a mixed culture containing sulfate-reducing bacteria. Apparently, these bacteria used H2 (produced by Fe0 corrosion) as electron donor to respire sulfate. Most of the TCE was degraded in the zone containing Fe0 (50-70%), and bioaugmentation with BRY slightly increased the removal efficiency to about 80%. Microbial colonization of the Fe0 surface was confirmed by scanning electron microscopy.  相似文献   

4.
Bioaugmentation was investigated as a method to decrease the recovery period of anaerobic digesters exposed to a transient toxic event. Two sets of laboratory-scale digesters (SRT = 10 days, OLR = 2 g COD/L-day), started with inoculum from a digester stabilizing synthetic municipal wastewater solids (MW) and synthetic industrial wastewater (WW), respectively, were transiently exposed to the model toxicant, oxygen. Bioaugmented digesters received 1.2 g VSS/L-day of an H2-utilizing culture for which the archaeal community was analyzed. Soon after oxygen exposure, the bioaugmented digesters produced 25-60% more methane than non-bioaugmented controls (p < 0.05). One set of digesters produced lingering high propionate concentrations, and bioaugmentation resulted in significantly shorter recovery periods. The second set of digesters did not display lingering propionate, and bioaugmented digesters recovered at the same time as non-bioaugmented controls. The difference in the effect of bioaugmentation on recovery may be due to differences between microbial communities of the digester inocula originally employed. In conclusion, bioaugmentation with an H2-utilizing culture is a potential tool to decrease the recovery period, decrease propionate concentration, and increase biogas production of some anaerobic digesters after a toxic event. Digesters already containing rapidly adaptable microbial communities may not benefit from bioaugmentation, whereas other digesters with poorly adaptable microbial communities may benefit greatly.  相似文献   

5.
Tale VP  Maki JS  Struble CA  Zitomer DH 《Water research》2011,45(16):5249-5256
Accumulation of acids in anaerobic digesters after organic overload can inhibit or stop CH4 production. Therefore, methods to reduce acid concentrations would be helpful. One potential method to improve recovery involves bioaugmentation, addition of specific microorganisms to improve performance. In this study, transiently overloaded digesters were bioaugmented with a propionate-degrading enrichment culture in an effort to decrease recovery time. Biomass samples from 14 different, full-scale anaerobic digesters were screened for specific methanogenic activity (SMA) against propionate; the microbial communities were also compared. SMA values spanned two orders of magnitude. Principal component analysis of denaturing gradient gel electrophoresis (DGGE) banding patterns for a functional gene (mcrA) suggested an underlying community structure-activity relationship; the presence of hydrogenotrophic methanogens closely related to Methanospirillum hungatei and Methanobacterium beijingense was associated with high propionate SMA values. The biomass sample demonstrating the highest SMA was enriched for propionate degrading activity and then used to bioaugment overloaded digesters. Bioaugmented digesters recovered more rapidly following the organic overload, requiring approximately 25 days (2.5 solids retention times (SRTs)) less to recover compared to non-bioaugmented digesters. Benefits of bioaugmentation continued for more than 12 SRTs after organic overload. Bioaugmentation is a promising approach to decrease recovery time after organic overload.  相似文献   

6.
采用流化态三维电极反应器处理水相2,4-二氯酚,考察了曝气强度、粒子电极密度及溶液的初始pH等因素对电解效果的影响。结果表明,以此反应器处理水相2,4-二氯酚,在表观电流密度为15 mA/cm2、曝气强度为120 m3/(h.m2)、粒子电极密度为30 g/L、pH值为4的条件下,反应120 min后,对2,4-二氯酚的去除率达到98.4%。可见,采用流化态三维电极反应器处理水相2,4-二氯酚是完全可行的。  相似文献   

7.
Karim K  Gupta SK 《Water research》2006,40(5):935-942
The effect of nitrophenolic shock loads on the performance of three bench-scale upflow anaerobic sludge blanket (UASB) reactors was studied using synthetic wastewater. Reactors R1, R2 and R3 were fed with 30 mg/L concentration of 2-nitrophenol (2-NP), 4-nitrophenol (4-NP) and 2,4-dinitrophenol (2,4-DNP), respectively, along with methanol (COD = 2000 mg/ L), sodium nitrate (NO3(-)-N=200mg/L), and other nutrients. The reactors were in continuous operation for more than 2 years before the shock loading study was performed. Five nitrophenolic shock loadings of 45, 60, 75, 90 and 120mg/L d were administrated by increasing the influent nitrophenolic concentration to 45, 60, 75, 90 and 120mg/L, respectively, while keeping hydraulic retention time as 24h. The shocks were given continuously for a period of 4 days before switching back to normal nitrophenolic loading (30mg/Ld). The reactors were allowed to recover to normal performance level before administrating the next nitrophenolic shock load. The study showed that the nitrophenolic shock load of as high as 120 mg/L d did not affect the reactors performance irreversibly. After resuming the normal nitrophenolic loading, it took almost 3-18 days for the reactors to recover from the shock effect. The study was further extended to assess the maximum possible mixed nitrophenolic loading (2NP:4NP:2,4:DNP = 1:1:1) to which 2,4-DNP acclimated granular sludge containing reactor (R3) can be exposed without hampering the reactor (R3) performance irreversibly. The reactor was able to achieve pseudo-steady-state at a mixed nitrophenolic loading of 180 mg/L d with more than 90% removal of all the three nitrophenols, but failed at a mixed nitrophenolic loading of 225 mg/Ld.  相似文献   

8.
Aerobic granular sludge is extremely promising for the treatment of effluents containing toxic compounds, and it can economically compete with conventional activated sludge systems. A laboratory scale granular sequencing batch reactor (SBR) was established and operated during 444 days for the treatment of an aqueous stream containing a toxic compound, 2-fluorophenol (2-FP), in successive phases. Initially during ca. 3 months, the SBR was intermittently fed with 0.22 mM of 2-FP added to an acetate containing medium. No biodegradation of the target compound was observed. Bioaugmentation with a specialized bacterial strain able to degrade 2-FP was subsequently performed. The reactor was thereafter continuously fed with 0.22 and 0.44 mM of 2-FP and with 5.9 mM of acetate (used as co-substrate), for 15 months. Full degradation of the compound was reached with a stoichiometric fluoride release. The 2-FP degrading strain was successfully retained by aerobic granules, as shown through the recovering of the strain from the granular sludge at the end of the experiment. Overall, the granular SBR has shown to be robust, exhibiting a high performance after bioaugmentation with the 2-FP degrading strain. This study corroborates the fact that bioaugmentation is often needed in cases where biodegradation of highly recalcitrant compounds is targeted.  相似文献   

9.
Kulkarni PM 《Water research》2012,46(7):2405-2414
The effect of nitrophenolic shock loads on the performance of three lab scale SBRs was studied using a synthetic feed. Nitrophenols were biotransformed by Simultaneous heterotrophic Nitrification and aerobic Denitrification (SND) using a specially designed single sludge biomass containing Thiosphaera pantotropha. Reactors R1, R2 and R3 were fed with 200 mg/L concentration of 4-nitrophenol (4-NP), 2,4-dinitrophenol (2,4-DNP), and 2,4,6-trinitrophenol (2,4,6-TNP) whereas reactor R was used as a background control. Three nitrophenolic shock loadings of 400, 600 and 800 mg/L d were administrated by increasing the influent nitrophenolic concentration while keeping the hydraulic retention time as 48 h. The shocks were given continuously for a period of 4 days before switching back to normal nitrophenolic loading (200 mg/L d). The reactors were allowed to recover to normal performance level before administrating the next nitrophenolic shock load. The study showed that a nitrophenolic shock load, as high as 600 mg/L d was completely degraded by the 4-NP & 2,4-DNP bioreactors while almost half degraded by the 2,4,6-TNP bioreactor without affecting the reactor’s performance irreversibly. After resuming the normal nitrophenolic loading, it took almost 8-10 days for the reactors to recover from the shock effect. The study was further extended to evaluate the maximum possible mixed nitrophenolic loading (4-NP:2,4-DNP:2,4,6-TNP 1:1:1) to which a reactor (R3) containing 2,4,6-TNP acclimated single sludge biomass can be exposed without hampering the reactor performance irreversibly. The reactor was able to achieve pseudo-steady-state at a mixed nitrophenolic loading of 300 mg/L d with more than 90% removal of all the three nitrophenols, but could remove half of the mixed nitrophenolic loading of 600 mg/L d.  相似文献   

10.
This study evaluates the application of Wet Peroxide Oxidation (WPO) for the treatment of solutions containing 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP). These compounds are of special interest due to their high toxicity and low biodegradability. WPO is included in the Advanced Oxidation Processes, which are technologies based on an initial formation of hydroxyl radicals that further oxidize the organic matter. The influence of some operating conditions such as temperature, dosage of hydrogen peroxide and initial concentration of the chlorophenols was studied in absence of a catalyst. The results of this study prove that 4-CP and 2,4-DCP can be completely removed from wastewaters by means of WPO. Total Organic Carbon (TOC) and 4-CP removals of 72.3% and 100%, respectively, were achieved working at 100 degrees C with 2.5 mL of H(2)O(2) and an initial concentration of 500 ppm of 4-CP after 90 min of reaction. Under the same conditions but with an initial concentration of 500 ppm of 2,4-DCP a TOC removal of 59% and a complete removal of the target compound were achieved.  相似文献   

11.
A phosphate removal sludge was bioaugmented with the aerobic denitrifier, Microvirgula aerodenitrificans in order to reduce the nitrate produced during the aerobic nitrifying-phosphate uptake phase. Fluorescent in situ hybridization (FISH) was used to follow the fate of the added strain. In order to maintain the pure strain in the complex ecosystem, diverse physiological and kinetic based strategies of bioaugmentation were tested under the sequencing batch reactor (SBR) type culture. The nature of the M. aerodenitrificans inoculum (adapted to nitrate-aerobic conditions or to anoxic one) had no influence on the SBR performances and did not enhance aerobic denitrifying performances. The optimum quantity of the added strain (10% of the total biomass) seemed to have much more positive influence on the long term maintenance of the pure strain than on the SBR performances. A small but daily supply of M. aerodenitrificans gave exactly the same result than a massive and 1-day supply, i.e. no enhancement of performances and no amelioration of the length of maintenance. A continuous supply of carbon during the first hour of the aerobic phase combined to a 10% supply of M. aerodenitrificans gave the best compromise in terms of phosphate removal, nitrification and aerobic denitrification performances. It was accompanied too by a decreased number of the ammonia and nitrite-oxidizing bacteria and a modification of the nitrite-oxidizing floc structure. FISH on M. aerodenitrificans revealed that (i) before bioaugmentation, the strain was already present in the phosphate removal sludge and (ii) the added bacteria almost disappeared from the reactor after 16 HRT. In a last experiment, M. aerodenitrificans embedded in alginate beads allowed enhancement of both aerobic denitrifying performances and length of strain maintenance.  相似文献   

12.
活性污泥生物增效技术在PTA废水处理中的应用   总被引:1,自引:1,他引:0  
通过中试将活性污泥生物增效技术引入到对精对苯二甲酸(PTA)废水的处理中,并与原PTA废水处理系统进行对比.结果表明,与原处理系统相比,投加生物增效菌种后,中试装置对COD的去除率、抗冲击能力和污泥沉降性能都有明显提高,污泥中的微生物数量和种类也有明显增多,系统对PTA废水的处理能力得以提升.  相似文献   

13.
Perchlorate removal in sand and plastic media bioreactors   总被引:3,自引:1,他引:3  
The treatment of perchlorate-contaminated groundwater was examined using two side-by-side pilot-scale fixed-bed bioreactors packed with sand or plastic media, and bioaugmented with the perchlorate-degrading bacterium Dechlorosoma sp. KJ. Groundwater containing perchlorate (77microg/L), nitrate (4mg-NO(3)/L), and dissolved oxygen (7.5mg/L) was amended with a carbon source (acetic acid) and nutrients (ammonium phosphate). Perchlorate was completely removed (<4microg/L) in the sand medium bioreactor at flow rates of 0.063-0.126L/s (1-2gpm or hydraulic loading rate of 0.34-0.68L/m(2)s) and in the plastic medium reactor at flow rates of <0.063L/s. Acetate in the sand reactor was removed from 43+/-8 to 13+/-8mg/L (after day 100), and nitrate was completely removed in the reactor (except day 159). A regular (weekly) backwashing cycle was necessary to achieve consistent reactor performance and avoid short-circuiting in the reactors. For example, the sand reactor detention time was 18min (hydraulic loading rate of 0.68L/m(2)s) immediately after backwashing, but it decreased to only 10min 1 week later. In the plastic medium bioreactor, the relative changes in detention time due to backwashing were smaller, typically changing from 60min before backwashing to 70min after backwashing. We found that detention times necessary for complete perchlorate removal were more typical of those expected for mixed cultures (10-18min) than those for the pure culture (<1min) reported in our previous laboratory studies. Analysis of intra-column perchlorate profiles revealed that there was simultaneous removal of dissolved oxygen, nitrate, and perchlorate, and that oxygen and nitrate removal was always complete prior to complete perchlorate removal. This study demonstrated for the first time in a pilot-scale system, that with regular backwashing cycles, fixed-bed bioreactors could be used to remove perchlorate in groundwater to a suitable level for drinking water.  相似文献   

14.
In situ treatment of PCB contaminated sediments via microbial dechlorination is a promising alternative to dredging, which may be reserved for only the most contaminated areas. Reductive dechlorination of low levels of weathered PCB mixtures typical of urban environments may occur at slow rates. Here, we report that biostimulation and bioaugmentation enhanced dechlorination of low concentration (2.1 mg PCBs/kg dry weight) historical PCBs in microcosms prepared with Anacostia River, Washington, DC, sediment. Treatments included electron donors butyrate, lactate, propionate and acetate (1 mM each); alternate halogenated electron acceptors (haloprimers) tetrachlorobenzene (TeCB, 25 μM), pentachloronitrobenzene (PCNB, 25 μM), or 2,3,4,5,6-PCB (PCB116, 2.0 μM); and/or bioaugmentation with a culture containing Dehalococcoides ethenogenes strain 195 (3 × 106 cells/mL). Dechlorination rates were enhanced in microcosms receiving bioaugmentation, PCNB and PCNB plus bioaugmentation, compared to other treatments. Microcosm subcultures generated after 415 days and spiked with PCB116 showed sustained capacity for dechlorination of PCB116 in PCNB, PCNB plus bioaugmentation, and TeCB treatments, relative to other treatments. Analysis of Chloroflexi 16S rRNA genes showed that TeCB and PCNB increased native Dehalococcoides spp. from the Pinellas subgroup; however this increase was correlated to enhanced dechlorination of low concentration weathered PCBs only in PCNB-amended microcosms. D. ethenogenes strain 195 was detected only in bioaugmented microcosms and decreased over 281 days. Bioaugmentation with D. ethenogenes strain 195 increased PCB dechlorination rates initially, but enhanced capacity for dechlorination of a model congener, PCB116, after 415 days occurred only in microcosms with enhanced native Dehalococcoides spp.  相似文献   

15.
Three rotating disk biofilm reactors were operated to evaluate whether bioaugmentation and biostimulation can be used to improve the start-up of microbial nitrification. The first reactor was bioaugmented during start-up period with an enrichment culture of nitrifying bacteria, the second reactor received a synthetic medium containing NH(4)(+) and NO(2)(-) to facilitate concomitant proliferation of ammonia- and nitrite-oxidizing bacteria, and the third reactor was used as a control. To evaluate the effectiveness of bioaugmentation and biostimulation approaches, time-dependent developments of nitrifying bacterial community and in situ nitrifying activity in biofilms were monitored by fluorescence in situ hybridization (FISH) technique and microelectrode measurements of NH(4)(+), NO(2)(-), NO(3)(-), and O(2). In situ hybridization results revealed that addition of the enrichment culture of nitrifying bacteria significantly facilitated development of dense nitrifying bacterial populations in the biofilm shortly after, which led to a rapid start-up and enhancement of in situ nitrification activity. The inoculated bacteria could proliferate and/or survive in the biofilm. In addition, the addition of nitrifying bacteria increased the abundance of nitrifying bacteria in the surface of the biofilm, resulting in the higher nitrification rate. On the other hand, the addition of 2.1mM NO(2)(-) did not stimulate the growth of nitrite-oxidizing bacteria and did inhibit the proliferation of ammonia-oxidizing bacteria instead. Thus, the start-up of NO(2)(-) oxidation was unchanged, and the start-up of NH(4)(+) oxidation was delayed. In all the three biofilm reactors, data sets of time series analyses on population dynamics of nitrifying bacteria determined by FISH, in situ nitrifying activities determined by microelectrode measurements, and the reactor performances revealed an approximate agreement between the appearance of nitrifying bacteria and the initiation of nitrification activity, suggesting that the combination of these techniques was a very powerful monitoring tool to evaluate the effectiveness of bioaugmentation and biostimulation strategies.  相似文献   

16.
Degradation of 2,4-dichlorophenol by immobilized iron catalysts   总被引:14,自引:0,他引:14  
Sabhi S  Kiwi J 《Water research》2001,35(8):1994-2002
The degradation of 2,4-Dichlorophenol (from now on 2,4-DCP) has been carried out on Nafion-Fe (1.78%) in the presence of H2O2 under visible light irradiation. A solution containing 2,4-DCP (TOC 72 mg C/L)) is seen to be mineralized in approximately 1 h in the presence of H2O2 (10 mM) under solar simulated visible light (80 mW cm-2) at pH values between 2.8 and 11. Homogeneous photo-assisted Fenton reactions were capable of mediating 2,4-DCP degradation only up to pH 5.4. The degradation kinetics of 2,4-DCP on Nafion-Fe membranes was more favorable than the one observed during Fenton photo-assisted processes at pH 2.8. The degradation of 2,4-DCP was investigated as a function of the substrate, oxidant concentration and applied light intensity. The Nafion-Fe was seen to be effective over many cycles during the photo-catalytic degradation of 2,4-DCP showing an efficient and stable performance during 2,4-DCP degradation without leaching out Fe(3+)-ions into the solution. Evidence is presented that the degradation at the surface of the Nafion-Fe membrane seems to be controlled by mass transfer and not by chemical reaction of the species in solution. The approach used to degrade 2,4-DCP is shown to be valid for other chloro-carbons like 4-chlorophenol, 2,3-chlorophenol and 2,4,5-trichlorophenol.  相似文献   

17.
Sulfate-reducing permeable reactive zones (SR-PRZs) are microbially-driven anaerobic systems designed for the removal of heavy metals and sulfate in mine drainage. Environmental perturbations, such as oxygen exposure, may adversely affect system stability and long-term performance. The objective of this study was to examine the effect of two successive aerobic stress events on the performance and microbial community composition of duplicate laboratory-scale lignocellulosic SR-PRZs operated using the following microbial community management strategies: biostimulation with ethanol or carboxymethylcellulose; bioaugmentation with sulfate-reducing or cellulose-degrading enrichments; inoculation with dairy manure only; and no inoculation. A functional gene-based approach employing terminal restriction fragment length polymorphism and quantitative polymerase chain reaction targeting genes of sulfate-reducing (dsrA), cellulose-degrading (cel5, cel48), fermentative (hydA), and methanogenic (mcrA) microbes was applied. In terms of performance (i.e., sulfate removal), biostimulation with ethanol was the only strategy that clearly had an effect (positive) following exposure to oxygen. In terms of microbial community composition, significant shifts were observed over the course of the experiment. Results suggest that exposure to oxygen more strongly influenced microbial community shifts than the different microbial community management strategies. Sensitivity to oxygen exposure varied among different populations and was particularly pronounced for fermentative bacteria. Although the community structure remained altered after exposure, system performance recovered, indicating that SR-PRZ microbial communities were functionally redundant. Results suggest that pre-exposure to oxygen might be a more effective strategy to improve the resilience of SR-PRZ microbial communities relative to bioaugmentation or biostimulation.  相似文献   

18.
Zhihua Liang 《Water research》2010,44(18):5432-5438
The growing release of nanosilver into sewage systems has increased the concerns on the potential adverse impacts of silver nanoparticles (AgNPs) in wastewater treatment plants. The inhibitory effects of nanosilver on wastewater treatment and the response of activated sludge bacteria to the shock loading of AgNPs were evaluated in a Modified Ludzack-Ettinger (MLE) activated sludge treatment system. Before shock-loading experiments, batch extant respirometric assays determined that at 1 mg/L of total Ag, nitrification inhibitions by AgNPs (average size = 1-29 nm) and Ag+ ions were 41.4% and 13.5%, respectively, indicating that nanosilver was more toxic to nitrifying bacteria in activated sludge than silver ions. After a 12-h period of nanosilver shock loading to reach a final peak silver concentration of 0.75 mg/L in the MLE system, the total silver concentration in the mixed liquor decreased exponentially. A continuous flow-through model predicted that the silver in the activated sludge system would be washed out 25 days after the shock loading. Meanwhile, a prolonged period of nitrification inhibition (>1 month, the highest degree of inhibition = 46.5%) and increase of ammonia/nitrite concentration in wastewater effluent were observed. However, nanosilver exposure did not affect the growth of heterotrophs responsible for organic matter removal. Microbial community structure analysis indicated that the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria, Nitrospira, had experienced population decrease while Nitrobacter was washed out after the shock loading.  相似文献   

19.
The highly effective nicotine-degrading bacterium Pseudomonas sp. HF-1 was augmented in an SBR system that is used to treat tobacco wastewater. Compared to the non-bioaugmented (non-BA) system, the bioaugmented (BA) system exhibited considerably stronger pollution disposal abilities, with 100% nicotine degradation and more than 84% chemical oxygen demand (COD) removal within 12 h. Nicotine degradation had a significant effect on COD removal in SBRs (r = 0.928, p < 0.01). The mechanisms of bioaugmentation were systematically investigated using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) and a toxicity assay (protein carbonyl (PC) and DNA-protein crosslinking (DPC)). DGGE fingerprint profiles showed that the number of bands and the Shannon-Wiener index decreased at a nicotine load of 250 mg/L compared to a 40-130 mg/L nicotine load in the non-BA system. However, a stepwise increase in the Shannon-Wiener index was found during all periods in the BA system. A comparison of sequences excised from DGGE gels demonstrated significant differences in the dominant microbial species between the two SBRs. This result suggested that bioaugmentation of strain HF-1 could select cooperators for treating complicated tobacco wastewater. The PC content and the DPC coefficient increased significantly at levels higher than 80 mg/L in the non-BA system; nevertheless, no increase was observed in the BA system during the stepwise nicotine load. This indicated that bioaugmentation of strain HF-1 resulted in the maintenance of high treatment activity by minimizing the nicotine toxicity for other microbes in the BA system. In conclusion, the rapid nicotine degradation of strain HF-1 performed a vital function in SBR by influencing the microbial community structure, dynamics and activity of the activated sludge system.  相似文献   

20.
Occurrence and removal efficiencies of 13 pharmaceuticals and personal care products (PPCPs) as well as BOD5, TSS and NH4+ were evaluated for the first time in thirteen onsite household secondary wastewater treatment systems, including two compact biofilters followed by Filtralite-P filter units, two biological sand filters, five horizontal subsurface flow and four vertical flow constructed wetlands. As expected, all systems removed TSS and BOD5 efficiently (>95% removal). The PPCP removal efficiencies exceeded 80% with the exception of carbamazepine, diclofenac and ketoprofen because of their more recalcitrant characteristics. Despite no statistical differences in the PPCP removal were observed between the different systems evaluated, the vegetated vertical flow constructed wetlands which had unsaturated flow and hence better oxygenation, appeared consistently to perform better in terms of PPCP removal efficiency. The combined effects of vegetation and unsaturated water flow provide a higher tolerance to variations in loading rate and a consistent removal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号