首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The influence of hygrothermal effects on the postbuckling of shear deformable laminated plates subjected to a uniaxial compression is investigated using a micro-to-macro-mechanical analytical model. The material properties of the composite are affected by the variation of temperature and moisture, and are based on a micro-mechanical model of a laminate. The governing equations of a laminated plate are based on Reddy's higher-order shear deformation plate theory that includes hygrothermal effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, antisymmetric angle-ply and symmetric cross-ply laminated plates under different sets of environmental conditions. The influences played by temperature rise, the degree of moisture concentration, the character of in-plane boundary conditions, transverse shear deformation, plate aspect ratio, total number of plies, fiber orientation, fiber volume fraction and initial geometric imperfections are studied.  相似文献   

2.
Postbuckling analysis is presented for a simply supported, shear deformable laminated plate subjected to biaxial compression combined with uniform lateral pressure and resting on an elastic foundation. The lateral pressure is first converted into an initial deflection and the initial geometrical imperfection of the plate is also taken into account. The formulations are based on the Reddy's higher-order shear deformation plate theory, and including the plate-foundation interaction. The analysis uses a perturbation technique to determine the buckling loads and the postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated plates under combined loading and resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The effects played by foundation stiffness, transverse shear deformation, plate aspect ratio, total number of plies, fiber orientation, the biaxial load ratio and initial lateral pressure are studied.  相似文献   

3.
Free vibration of laminated composite plates using two variable refined plate theory is presented in this paper. The theory accounts for parabolic distribution of the transverse shear strains through the plate thickness, and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Equations of motion are derived from the Hamilton's principle. The Navier technique is employed to obtain the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical results obtained using present theory are compared with three-dimensional elasticity solutions and those computed using the first-order and the other higher-order theories. It can be concluded that the proposed theory is not only accurate but also efficient in predicting the natural frequencies of laminated composite plates.  相似文献   

4.
This paper deals with the nonlinear vibration and dynamic response of simply supported shear deformable cross-ply laminated plates with piezoelectric actuators subjected to mechanical, electrical and thermal loads. The material properties are assumed to be independent of the temperature and electric field. Theoretical formulations are based on the higher order shear deformation plate theory and general von Kármán-type equation, which includes thermo-piezoelectric effects. Due to the bending and stretching coupling effects, a nonlinear static problem is first solved to determine the pre-vibration deformation caused by temperature field and control voltage. By adding an incremental dynamic state to the pre-vibration state, the equations of motion are solved by an improved perturbation technique to determine nonlinear frequencies and dynamic responses of hybrid laminated plates. The numerical illustrations concern nonlinear vibration characteristics of unsymmetric cross-ply laminated plates. The results presented show the effects of temperature rise, applied voltage and stacking sequence on the nonlinear vibration and dynamic response of the plates.  相似文献   

5.
为了研究叠层平面圆环的振动行为和叠层对其振动影响,用有限元法对系列均质平面圆环进行振动分析以获得试验比较参照,对系列均质圆环和不同夹紧压力下的系列叠层圆环进行大量试验。理论分析和试验结果表明,叠层平面圆环的振动行为是由组成该叠层圆环的单片圆环的振动行为所支配,但叠层对圆环的振动有着重要影响,且这种影响与模态类型、夹紧压力和叠层层数有很大关系。随着叠层层数和夹紧力的增加,圆环纵向振动模态将很快消失,而平面模态得以保留并支配叠层平面圆环的振动。  相似文献   

6.
Spline function approximation technique is used to analyze the free vibration of symmetric and anti-symmetric cross-ply plates under shear deformation theory. The equations of motion of the plate are derived using YNS theory. A system of coupled differential equations in terms of displacement and rotational functions are obtained by assuming the solution in a separable form. These functions are approximated using Bickley-type splines of suitable orders. A generalized eigenvalue problem is obtained on applying the process of point collocation with suitable boundary conditions. Parametric studies have been made to investigate the frequency response of the plates with reference to the material properties, number of layers, fiber orientation, side-to-thickness ratio, aspect ratio and relative layer thickness. Some results are compared with existing solution obtained by FEM.  相似文献   

7.
This study is concerned with the static deflections and natural frequencies of isotropic, orthotropic/laminated composite plates using a Levy-type solution. Mindlin plate theory is applied in conjunction with the state-space concept to find such solutions. A state-space formulation of such plates is composed of variables having physical meanings, such as moments, shear forces, displacements and rotations. The influences of aspect ratio, ratio, fiber orientation angle, laminate-layer arrangement and ratio of moduli have been investigated. Some numerical results from the present analyses are compared with published results and good agreement is found.  相似文献   

8.
The effect of random variations in material properties of laminated sandwich plates on the transverse deflections is investigated. An improved higher-order plate model is proposed earlier by the authors, which satisfies the transverse shear stress continuity conditions at the layer interfaces including the zero transverse shear stress conditions at the plate top and bottom surfaces. The theory assumes the variation of in-plane displacements to be cubic with discontinuities in the transverse shear strains at the layer interfaces, while the transverse displacements varies quadratically across the core thickness, thereby including transverse normal deformation of the soft core. The core is considered to behave as a 3-D elastic medium. To obtain the second-order statistics of deflections of sandwich plate, a stochastic C0 finite element (FE) based on the first-order perturbation technique is developed, where the lamina properties are considered as basic random variables while the other system properties are assumed to be deterministic. The performance of the improved stochastic laminated sandwich model is demonstrated through comparison of mean and standard deviations (SDs) of deflections obtained through independent Monte Carlo simulations and by comparison with results available in literature.  相似文献   

9.
The effect of bend–twist coupling on the shear buckling behaviour of laminated composite plates is examined in this paper using a finite strip procedure. The complex buckled shapes which are associated with shear loading are duly accounted for in the analysis approach through the multi-term facility of the strip formulation employed and, of course, through the appropriate level of structural modelling. The degree of bend–twist coupling in the laminated composite plates is varied by changing the level of anisotropy in the plies and by altering the lay-up configuration of the plies in the laminated stack. Symmetric laminates of a balanced and unbalanced nature are given consideration. It is shown that, for a given degree of anisotropy in the plies of a laminate and for a given laminate thickness, the stacking sequence of the plies significantly alters the degree of bend–twist coupling. The shear buckling performance of composite plates having the same dimensions and being made from the same material are therefore shown in the paper to be quite different. The preclusion of the bend–twist coupling coefficients in the solution procedure of the finite strip method allows the shear buckling orthotropic solution to be determined. Comparisons between the coupled and orthotropic solutions are shown in the paper to be markedly different with respect to critical shear performance level and also buckled mode shape. For square plates or plates with a moderate aspect ratio the influence of bend–twist coupling on buckled mode shape is shown in the paper to be noticeable through increased distortion. For the larger aspect ratio plates it is shown that the presence of bend–twist coupling can cause a complete change in the mode shape from a symmetric to an antisymmetric nature or vice versa. Amplitude modulation is shown in the paper to be clearly evident in the shear buckling mode shapes of long plates.  相似文献   

10.
含孔复合材料层合板在压缩载荷下的三维逐渐损伤   总被引:7,自引:1,他引:6  
通过逐渐损伤分析可以清楚地了解承载复合材料层合板内部损伤的产生及扩展过程,应用三维逐渐累积损伤理论和有限元分析技术,对不同材料不同宽孔比的含孔复合材料层合板在压缩载荷作用下的逐渐破坏过程进行分析,综合考虑了基体开裂、基纤剪切、分层及纤维断裂等四种复合材料层合板的主要破坏模式。在通用有限元分析软件ANSYS基础上进行二次开发,编制了参数化的分析模拟程序,该程序可以预测任意铺层角度和铺层厚度层合板在压缩载荷作用下的逐渐损伤破坏过程及最终失效载荷,通过与已有参考文献结果进行比较,验证了方法及程序的正确性。该程序可以较大程度地提高最终失效载荷的预测精度,为复合材料层合板结构的设计和使用提供了有力的技术支持。  相似文献   

11.
In this study, the dynamic response of free vibration of laminated composite twisted (skewed) plate with mass variation via cutout and additional mass is investigated. The mathematical model employs cubic variation of the thickness coordinates in the displacement field. The mathematical formulation also includes the effects of transverse shear and rotatory inertia. A realistic parabolic distribution of transverse shear strains through the plate thickness is assumed and the use of the shear correction factor is avoided. A C0 finite element formulation of the mathematical model is developed to analyze the dynamic behavior of laminated composite twisted plate with cutout and additional mass. Given that no results on the present problem of free vibration of laminated composite twisted plate with cutout and additional mass are available in literature, novel results for different twist angles of laminated composite plates along with mode shapes are presented by varying the geometry, boundary conditions, and ply orientations.  相似文献   

12.
The buckling characteristics of sandwich plates having laminated stiff layers are studied for different types of partial edge loadings using a refined plate theory. With this plate theory, the through thickness variation of transverse shear stresses is represented by piecewise parabolic functions where the continuity of these stresses is satisfied at the layer interfaces by taking jumps in the transverse shear strains at the interfaces. The transverse shear stresses free condition at the plate top and bottom surfaces is also satisfied. It is quite interesting to note that this plate model having all these refined features requires unknown parameters only at the reference plane. To have a generality in the present analysis, finite element technique is adopted and it is carried out with newly developed triangular element, as existing finite elements cannot accommodate this plate model. So far, no solution exists in the literature for the problem of sandwich plate subjected to partial edge loading. The present analysis is first validated for the case of an isotropic plate subjected to partial edge compression and then it is extended to analyze sandwich plates. Few results are presented.  相似文献   

13.
Meshless collocations utilizing Gaussian and Multiquadric radial basis functions for the stability analysis of orthotropic and cross ply laminated composite plates subjected to thermal and mechanical loading are presented. The governing differential equations of plate are based on higher order shear deformation theory considering two different transverse shear stress functions. The plate governing differential equations are discretized using radial basis functions to cast a set of simultaneous equations. The convergence of both radial basis functions is studied for different values of shape parameters. Several numerical examples are undertaken to demonstrate the accuracy of present method and the effects of orthotropy ratio of the material, span to thickness ratio of the plate, and fiber orientation on critical load/temperature are also presented.  相似文献   

14.
Presented herein is a canonical exact deflection expression for stepped (or piecewise-constant thickness) circular plates under rotationally symmetric transverse loads. The circular plates may be either simply supported or clamped at the edges. As the plates may be very thick or certain portions of the optimal design may become rather thick, the significant effect of transverse shear deformation on the deflections cannot be ignored. This effect was taken into consideration in accordance to the Mindlin plate theory. Based on the analytical deflection expression, necessary conditions are derived for the optimal values of segmental lengths and thicknesses that minimize the maximum deflection of stepped circular plates of a given volume. These optimality conditions are solved using the Newton method for the optimal segmental lengths and thicknesses. Local minima are observed for this nonlinear problem at hand and they may pose some difficulties in getting the solutions. The shear deformation effect increases the plate deflections, but interestingly it affects the thickness variation marginally.  相似文献   

15.

In this study, interfacial fracture toughness was investigated experimentally and numerically in laminated composite plates with different fiber reinforcement angles bonded with adhesive. The composite plates are four-layered and the layer sequence is [0º/θ]s. DCB test was applied to composite plates reinforced with epoxy resin matrix and unidirectional carbon fiber. The experimental sample model for the DCB test was made using the ANSYS finite element package program. In the numerical study, four layered composites were prepared in three dimensions. Under critical displacement value; mode I fracture toughness at the crack tip was calculated using VCC (virtual crack closure) technique. Numerical values consistent with experimental results have presented in graphical forms. At 60o and 75° the greatest fracture toughness was obtained. In addition, numerical results have shown that fiber orientation prevents the uniform distribution of stress on the interface crack tip and causes stress accumulation, especially at the edge of the plate.

  相似文献   

16.
In this study, based on the reduced from of elasticity displacement field for a long laminate, an analytical method is established to exactly obtain the interlaminar stresses near the free edges of generally laminated composite plates under the extension and bending. The constant parameters, which describe the global deformation of a laminate, are properly computed by means of the improved first-order shear deformation theory. Reddy's layerwise theory is subsequently utilized for analytical and numerical examinations of the boundary layer stresses within arbitrary laminated composite plates. A variety of numerical results are obtained for the interlaminar normal and shear stresses along the interfaces and through the thickness of laminates near the free edges. Finally the effects of end conditions of laminates on the boundary-layer stress are examined.  相似文献   

17.
The critical compressive load in the buckling of circular and annular composite plates reinforced with carbon nanotubes (CNTs) is calculated using finite element method. The developed model is based on the third-order shear deformation theory for moderately thick laminated plates. Effects of CNTs orientation angles and thickness-to-inner radius ratio on the buckling of composite plates are discussed. The results are compared with those obtained by analytical method based on classical plate theory. The finite element method shows lower values for critical buckling load because of the elimination of shear strain in the classical plate theory.  相似文献   

18.
In the present paper, the effect of random system properties on transverse nonlinear central deflection of laminated composite spherical shell panel subjected to hygro-thermo-mechanical loading is investigated. System properties such as material properties, thermal expansion coefficients, hygro-contraction coefficients, load intensity and lamina plate thickness are taken as independent random variables. The higher order shear deformation theory and von-Karman nonlinear kinematics are used for basic mathematical formulation. The elastic and hygrothermal properties of the composite material, which are considered to be dependent on temperature and moisture concentration, have been obtained based on micromechanical modeling. A direct iterative based C0 nonlinear finite element method combined with mean centered first-order perturbation technique (FOPT) proposed by present authors for the plate is extended for the spherical shell panel subjected to hygro-thermo-mechanical loading. The influences of random system properties with plate geometry, stacking sequences, support conditions, fiber volume fraction and temperature, and moisture distributions on the response of laminated spherical shell panel are examined in detail. The performance of the proposed approach is validated through comparison with those available in the literature and independent Monte Carlo simulation (MCS).  相似文献   

19.
A design-experiment method of estimating and forecasting nonlinear deformation of unidirectional and layered coal-plastic with different angles of layers placed under quasi-static loading is proposed. The elastic properties of a layer were determined on the basis of test results of crossing-reinforced flat samples under stretching. It was assumed that the nonlinearity of a layer and of a stack with multiple layers stowed at different angles is determined by nonlinear deformation of the layer at shear in the layer’s plane, which was described with the help of a piecewise-linear approximation. To construct the defining relations of the pack, the theory of laminated plates was used. The investigation results showed a satisfactory agreement of calculated and experimental data.  相似文献   

20.
A general geometrically nonlinear model for thin-walled composite space beams with arbitrary lay-ups under various types of loadings is presented. This model is based on the first-order shear deformable beam theory, and accounts for all the structural coupling coming from both material anisotropy and geometric nonlinearity. The nonlinear governing equations are derived and solved by means of an incremental Newton-Raphson method. A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed. Numerical results are obtained for thin-walled composite box beams under vertical load to investigate the effects of shear deformation, geometric nonlinearity and fiber orientation on axial-flexural-torsional response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号