首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we fabricated well-ordered arrays of site-controlled, vertically-aligned Si nanowires on the desired areas of pre-patterned (001)Si substrates by employing the nanosphere lithographic technique in combination with the Au-assisted selective etching process. The results of transmission electron microscopy and selected-area electron diffraction analysis show that the Si nanowires that fabricated on the patterned (001)Si substrates have a single-crystalline nature and form along the [001] direction. The length of the Si nanowires was found to increase linearly with the Au-assisted etching time. Scanning electron microscopy images clearly revealed that by adjusting the sizes of the nanosphere template and the etching temperature and time, the diameter and length of the patterned Si nanowires could be effectively tuned and accurately controlled. Furthermore, the diameters of the Si nanowires produced at various temperatures and time were found to be relatively uniform over the entire length. The combined approach presented here provides the capability to fabricate a variety of size-, length-tunable 1D Si-based nanostructures on various patterned Si-based substrates.  相似文献   

2.
We present an extensive investigation of the epitaxial growth of Au-assisted axial heterostructure nanowires composed of group IV and III-V materials and derive a model to explain the overall morphology of such wires. By analogy with 2D epitaxial growth, this model relates the wire morphology (i.e., whether it is kinked or straight) to the relationship of the interface energies between the two materials and the particle. This model suggests that, for any pair of materials, it should be easier to form a straight wire with one interface direction than the other, and we demonstrate this for the material combinations presented here. However, such factors as kinetics and the use of surfactants may permit the growth of straight double heterostructure nanowires. Finally, we demonstrate that branched nanowire heterostructures, also known as nanotrees, can be successfully explained by the same model.  相似文献   

3.
Axial GaAs nanowire p-n diodes, possibly one of the core elements of future nanowire solar cells and light emitters, were grown via the Au-assisted vapor-liquid-solid mode, contacted by electron beam lithography, and investigated using electron beam induced current measurements. The minority carrier diffusion lengths and dynamics of both, electrons and holes, were determined directly at the vicinity of the p-n junction. The generated photocurrent shows an exponential decay on both sides of the junction and the extracted diffusion lengths are about 1 order of magnitude lower compared to bulk material due to surface recombination. Moreover, the observed strong diameter-dependence is well in line with the surface-to-volume ratio of semiconductor nanowires. Estimating the surface recombination velocities clearly indicates a nonabrupt p-n junction, which is in essential agreement with the model of delayed dopant incorporation in the Au-assisted vapor-liquid-solid mechanism. Surface passivation using ammonium sulfide effectively reduces the surface recombination and thus leads to higher minority carrier diffusion lengths.  相似文献   

4.
Vertical zinc blende GaAs/AlGaAs heterostructure nanowires were grown at different temperatures by metalorganic chemical vapor deposition via Au-assisted vapor-liquid-solid mechanism.It was found that radial growth can be enhanced by increasing the growth temperature.The growth of radial heterostructure can be realized at temperature higher than 500℃,while the growth temperature of axial heterostructure is lower than 440℃.The room temperature photoluminescence properties of the nanowires were investigated and the relevant growth mechanism was discussed.  相似文献   

5.
We report the temperature dependence of the Au-assisted growth of InAs nanowires in MOVPE. Extensive studies of the growth of such nanowires have attributed growth to the so-called vapor-liquid-solid (VLS) mechanism, with a liquid Au-In alloy particle. We assert here that growth is instead assisted by a solid particle and does not occur at all when the particle is a liquid. Thus the temperature range of InAs nanowire growth is limited by the melting of the Au-In alloy. Comparison with growth of InAs nanowires in the same system assisted by a layer of SiO(x) is used to support this conclusion.  相似文献   

6.
Tateno K  Zhang G  Gotoh H  Sogawa T 《Nano letters》2012,12(6):2888-2893
We investigated the Au-assisted growth of alternating InAsP/InP heterostructures in wurtzite InP nanowires on InP(111)B substrates for constructing multiple-quantum-dot structures. Vertical InP nanowires without stacking faults were obtained at a high PH(3)/TMIn mole flow ratio of 300-1000. We found that the growth rate changed largely when approximately 40 min passed. Ten InAsP layers were inserted in the InP nanowire, and it was found that both the InP growth rate and the background As level increased after the As supply. We also grew the same structure using TBAs/TBP and could reduce the As level in the InP segments. A simulation using a finite-difference time-domain method suggests that the nanowire growth was dominated by the diffusion of the reaction species with long residence time on the surface. For TBAs/TBP, when the source gases were changed, the formed surface species showed a short diffusion length so as to reduce the As background after the InAsP growth.  相似文献   

7.
We demonstrate two very different morphologies for GaP and GaAs nanowires grown by Au-assisted MOVPE on Si(111) substrates: rodlike wires and tapered wires with sharp tips. We show that the morphology is related to the stability of the particles at the wire tips during growth, and we propose that the mechanism of this effect is diffusion of Au away from the tip. Diffusion occurs, leading to tapered wires, only if there is a clean Si surface to act as a reservoir for the Au. Furthermore, the presence of indium in the particles, even at background levels from previous growth runs, inhibits the migration of Au. These results demonstrate a dramatic example of the sensitivity of wire morphology to substrate and particle chemistry, which could provide an important tool to tune nanowire morphology through particle alloying or surface treatment.  相似文献   

8.
We report the growth of GaAsSb nanowires (NWs) on GaAs(111)B substrates by Au-assisted molecular beam epitaxy. The structural characteristics of the GaAsSb NWs have been investigated in detail. Their Sb mole fraction was found to be about?25%. Their crystal structure was found to be pure zinc blende (ZB), in contrast to the wurtzite structure observed in GaAs NWs grown under similar conditions. The ZB GaAsSb NWs exhibit rotational twins around their [111]B growth axis, with twin-free segments as long as 500?nm. The total volumes of GaAsSb segments with twinned and un-twinned orientations, respectively, were found to be equal by x-ray diffraction analysis of NW ensembles.  相似文献   

9.
We report the growth of InAs/InAs(1-x)Sb(x) single and double heterostructured nanowires by Au-assisted chemical beam epitaxy. The InAs(1-x)Sb(x) nanowire segments have been characterized in a wide range of antimony compositions. Significant lateral growth is observed at intermediate compositions (x ~ 0.5), and the nucleation and step-flow mechanism leading to this lateral growth has been identified and described. Additionally, CuPt ordering of the alloy has been observed with high resolution transmission electron microscopy, and it is correlated to the lateral growth process. We also show that it is possible to regrow InAs above the InAsSb alloy segment, at least up to an intermediate antimony composition. Such double heterostructures might find applications both as mid-infrared detectors and as building blocks of electronic devices taking advantage of the outstanding electronic and thermal properties of antimonide compound semiconductors.  相似文献   

10.
We report on the fabrication by Au-assisted molecular beam epitaxy of InP nanowires with embedded InAsP insertions. The growth temperature affects the nucleation on the nanowire lateral surface. It is therefore possible to grow the wires in two steps: to fabricate an axial heterostructure (at 420 degrees C), and then cover it by a shell (at 390 degrees C). The InAsP alloy composition could be varied between InAs0.35P0.65 and InAs0.5P0.5 by changing the As to P flux ratio. When a shell is present, the InAsP segments show strong room-temperature photoluminescence with a peak wavelength tunable from 1.2 to 1.55 mum by adjusting the As content. If the axial heterostructure has no shell, luminescence intensity is drastically reduced. Low-temperature microphotoluminescence performed on isolated single wires shows narrow peaks with a line width as small as 120 microeV.  相似文献   

11.
Cadmium chalcogenide nanowires have demonstrated superior electrical and optical properties,and have emerged as prominent building blocks for nanoscale electronic and optoelectronic devices.In addition to the effort devoted to advance techniques of fabricating high quality nanowires,much has been endeavored to elucidate their unique physical properties for better design and development of functional devices with low power consumption and high performance.Herein,this article provides a comprehensive review of the forefront research on cadmium chalcogenide nanowires,ranging from material synthesis,property characterizations,and device applications.  相似文献   

12.
Previously we have described the deposition of vertically aligned wurtzite CdTe nanowires derived from an unusual catalytically driven growth mode. This growth mode could only proceed when the surface of the substrate was corrupted with an alcohol layer, although the role of the corruption was not fully understood. Here, we present a study detailing the remarkable role that this substrate surface alteration plays in the development of CdTe nanowires; it dramatically improves the size uniformity and largely eliminates lateral growth. These effects are demonstrated to arise from the altered surface's ability to limit Ostwald ripening of the catalytic seed material and by providing a surface unable to promote the epitaxial relationship needed to sustain a lateral growth mode. The axial growth of the CdTe nanowires is found to be exclusively driven through the direct impingement of adatoms onto the catalytic seeds leading to a self-limiting wire height associated with the sublimation of material from the sidewall facets. The work presented furthers the development of the mechanisms needed to promote high quality substrate-based vertically aligned CdTe nanowires. With our present understanding of the growth mechanism being a combination of selective area epitaxy and a catalytically driven vapour-liquid-solid growth mode, these results also raise the intriguing possibility of employing this growth mode in other material systems in an effort to produce superior nanowires.  相似文献   

13.
GaN nanowires have been fabricated successfully on Si (111) substrates coated with NiCl2 thin films by chemical vapor deposition method using Ga2O3 as raw material. The growth of GaN nanowires was investigated as a function of reaction times so as to study the influence of different durations on the components, microstructure, morphologies and optical properties of GaN samples in particular by X-ray diffraction, FT-IR spectrophotometer, scanning electron microscope, and photoluminescence. The results show that the samples after reaction are single crystal GaN with hexagonal wurtzite structure and high-quality crystalline after reaction at 1,100 °C for 60 min, which have good optical properties as revealed by PL spectra. Reaction time greatly influences the growth of GaN nanowires, that is, with the increase in reaction time, the crystalline quality of GaN nanowires is improved accordingly. The growth of the GaN nanowires follows the vapor–liquid-solid mechanism and Ni plays an important role as catalyst, which forms nucleation point in the growth of GaN nanowires.  相似文献   

14.
High quality wurtzite CdS nanowires have been synthesized by thermal evaporation of CdS powder onto Si substrate in the presence of Au catalyst at 650 degrees C by using pure H2 as a carrier gas. The nanowires were 10 nm in diameter and a few tens of micrometers in length. XRD patterns demonstrated that as prepared CdS is a pure crystalline material. High-resolution transmission electron microscopy of the materials showed that all CdS nanowires grew along (0001). According to analysis of selective area electron diffraction patterns taken from the interface, we proposed that there is a kind of epitaxy relationship in the interface region between Au catalyst and CdS grown, i.e., (0001)CdS // (111)Au, and [1210]CdS // [011]Au.  相似文献   

15.
Single crystal nanostructures of semiconducting tin oxides have been fabricated and characterized as sensing materials for implementation in an electronic nose. The nanowires exhibit exceptional crystalline quality and a very high length-to-width ratio, resulting in enhanced sensing capability as well as long-term material stability for prolonged operation. A sensing device based on SnO2 nanowires has been fabricated and comparatively tested in an array of chemical sensor with conventional thin film sensing device. Preliminary measurements ethanol/water mixtures demonstrate that nanowire-based sensors can be favourably implemented in the electronic nose and that they perform comparably with the conventional thin film layers.  相似文献   

16.
InAs nanowires have been actively explored as the channel material for high performance transistors owing to their high electron mobility and ease of ohmic metal contact formation. The catalytic growth of nonepitaxial InAs nanowires, however, has often relied on the use of Au colloids which is non-CMOS compatible. Here, we demonstrate the successful synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on amorphous SiO2 substrates. The nanowires show superb electrical properties with field-effect electron mobility ~2700 cm2/Vs and ION/IOFF >103. The uniformity and purity of the grown InAs nanowires are further demonstrated by large-scale assembly of parallel arrays of nanowires on substrates via the contact printing process that enables high performance, “printable” transistors, capable of delivering 5 10 mA ON currents (~400 nanowires).  相似文献   

17.
We report on the synthesis and characterization of new a nano-wire-like material with chemical formula Mo6S4.5I4.5. The material can be synthesized in a single step reaction from elements in bulk quantities. The material has a fur-like appearance and is composed of nanowires that are weakly bound in bundles. Bundles itself can be dispersed using an ultrasonic bath in various organic solvents and water. Elemental analysis, X-ray diffraction, thermal analysis (TG, DTA), and electron microscopy were used to characterize the new material in the shape of nanowires. Due to their monodisperse and metallic nature, molybdenum-sulphur-iodine nanowires are an interesting alternative to carbon nanotubes for some applications.  相似文献   

18.
Strain-controlled growth of nanowires within thin-film cracks   总被引:1,自引:0,他引:1  
There is continued interest in finding quicker and simpler ways to fabricate nanowires, even though research groups have been investigating possibilities for the past decade. There are two reasons for this interest: first, nanowires have unusual properties-for example, they show quantum-mechanical confinement effects, they have a very high surface-to-volume ratio, enabling them to be used as sensors, and they have the ability to connect to individual molecules. Second, no simple method has yet been found to fabricate nanowires over large areas in arbitrary material combinations. Here we describe an approach to the generation of well-defined nanowire network structures on almost any solid material, up to macroscopic sample sizes. We form the nanowires within cracks in a thin film. Such cracks have a number of properties that make them attractive as templates for nanowire formation: they are straight, scalable down to nanometre size, and can be aligned (by using microstructure to give crack alignment via strain). We demonstrate the production of nanowires with diameter <16 nm, both singly and as networks; we have also produced aligned patterns of nanowires, and nanowires with individual contacts.  相似文献   

19.
利用热蒸发方法,在硅衬底上制备出立方MgZnO纳米线。以Mg粉为源材料,所制备的为立方相MgO纳米线。以Mg粉和Zn粉混合物为源材料,可以制备出立方相MgZnO纳米线,Zn含量7%,直径200~300nm,具有单晶结构;同时产物中还包括六方相ZnO纳米线,直径30nm左右。MgZnO纳米线中Zn含量远低于源材料中的Zn含量,这可能是ZnO和Zn的蒸汽压远大于MgO和Mg的缘故。  相似文献   

20.
Gallium nitride (GaN) is a high-temperature semiconductor material of considerable interest. It emits brilliant light and has been considered as a key material for the next generation of high frequency and high power transistors that are capable of operating at high temperatures. Due to its anisotropic and polar nature, GaN exhibits direction-dependent properties. Growth directions along [001], [1?10] and [110] directions have all been synthesized experimentally. In this work, molecular dynamics simulations are carried out to characterize the mechanical properties of GaN nanowires with different orientations at different temperatures. The simulation results reveal that the nanowires with different growth orientations exhibit distinct deformation behavior under tensile loading. The nanowires exhibit ductility at high deformation temperatures and brittleness at lower temperature. The brittle to ductile transition (BDT) was observed in the nanowires grown along the [001] direction. The nanowires grown along the [110] direction slip in the {010} planes, whereas the nanowires grown along the [1?10] direction fracture in a cleavage manner under tensile loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号