首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct mass spectrometric quantification of peptides and proteins is compromised by the wide variabilities in ionization efficiency which are hallmarks of both the MALDI and ESI ionization techniques. We describe here the implementation of a fluorescence detection system for measurement of the UV-excited intrinsic fluorescence (UV-IF) from peptides and proteins just prior to their exit and electrospray ionization from an ESI capillary. The fluorescence signal provides a quantifiable measure of the amount of protein or peptide present, while direct or tandem mass spectrometric analysis (MS/MS) on the ESI-generated ions provides information on identity. We fabricated an inexpensive, modular fluorescence excitation and detection device utilizing an ultraviolet light-emitting diode for excitation in a ~300 nL fluorescence detection cell integrated into the fused-silica separation column. The fluorescence signal is linear over 3 orders of magnitude with on-column limits of detection in the low femtomole range. Chromatographically separated intact proteins analyzed using UV-IF prior to top-down mass spectrometry demonstrated sensitive detection of proteins as large as 77 kDa.  相似文献   

2.
Dai J  Shieh CH  Sheng QH  Zhou H  Zeng R 《Analytical chemistry》2005,77(18):5793-5799
A novel integrated multidimensional liquid chromatography (IMDL) method is demonstrated for the separation of peptide mixtures by two-dimensional HPLC coupled with ion trap mass spectrometry. The method uses an integrated column, containing both strong cation exchange and reversed-phase sections for two-dimensional liquid chromatography. The peptide mixture was fractionated by a pH step using a series of pH buffers, followed by reversed-phase chromatography. Since no salt was used during separation, the integrated multidimensional liquid chromatography can be directly connected to mass spectrometry for peptide analysis. The pH buffers were injected from an autosampler, and the entire process can be carried out on a one-dimensional liquid chromatography system. In a single analysis, the IMDL system, coupled with linear ion trap mass spectrometry, identified more than 2000 proteins in mouse liver. The peptides were eluted according to their pI distribution. The resolution of the pH fractionation is approximately 0.5 pH unit. The method has low overlapping across pH fractions, good resolution of peptide mixture, and good correlation of peptide pIs with pH steps. This method provides a technique for large-scale protein identification using existing one-dimensional HPLC systems.  相似文献   

3.
Monobromobimane (MBB) is a lipophilic reagent that selectively modifies free cysteine residues in proteins. Because of its lipophilic character, MBB is capable of labeling cysteine residues in membrane proteins under native conditions. Reaction of MBB with the sulfhydryl groups of free cysteines leads to formation of highly fluorescent derivatives. Here we describe a procedure for the detection and relative quantitation of MBB-labeled cysteines using fluorescence and mass spectrometric analyses, which allow determination of free cysteine content and unambiguous identification of MBB-modified cysteine residues. We have applied this approach to the analysis of the free and redox-sensitive cysteine residues of a large membrane protein, the sarcoplasmic reticulum Ca2+ release channel with a molecular mass of 2.2 million Da. Labeling was performed under physiologic conditions where the channel complex is in its native environment and is functionally active. The purified MBB-labeled channel complex was enzymatically digested, and the resulting peptides were separated by reversed-phase high-performance chromatography. MBB-labeled peptides were detected by fluorescence and identified by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Under MALDI conditions, partial photolytic fragmentation of the MBB-peptide bound occurred, thus allowing convenient screening for the MBB-modified peptides in the MS spectrum by detection of the specific mass increment of 190.07 Da for MBB-modified cysteine residues. Modification of the peptides was further confirmed by tandem mass spectrometric analysis, utilizing sequencing information and the presence of the specific immonium ion for the MBB-modified cysteine residues at m/z 266.6. Quantitative information was obtained by comparison of both fluorescence and MS signal intensities of MBB-modified peptides. Combination of fluorescence with MS detection and analysis of MBB-labeled peptides supported by a customized software program provides a convenient method for identifying and quantifying redox-sensitive cysteines in membrane proteins of native biological systems. Identification of one redox-sensitive cysteine (2327) in the native membrane-bound sarcoplasmic reticulum Ca2+ release channel is described.  相似文献   

4.
The dynamic range of protein expression in complex organisms coupled with the stochastic nature of discovery-driven tandem mass spectrometry (MS/MS) analysis continues to impede comprehensive sequence analysis and often provides only limited information for low-abundance proteins. High-performance fractionation of proteins or peptides prior to mass spectrometry analysis can mitigate these effects, though achieving an optimal combination of automation, reproducibility, separation peak capacity, and sample yield remains a significant challenge. Here we demonstrate an automated nanoflow 3-D liquid chromatography (LC)-MS/MS platform based on high-pH reversed phase (RP), strong anion exchange (SAX), and low-pH reversed phase (RP) separation stages for analysis of complex proteomes. We observed that RP-SAX-RP outperformed RP-RP for analysis of tryptic peptides derived from Escherichia coli and enabled identification of proteins present at a level of 50 copies per cell in Saccharomyces cerevisiae, corresponding to an estimated detection limit of 500 amol, from 40 μg of total lysate on a low-resolution 3-D ion trap mass spectrometer. A similar study performed on a LTQ-Orbitrap yielded over 4000 unique proteins from 5 μg of total yeast lysate analyzed in a single, 101 fraction RP-SAX-RP LC-MS/MS acquisition, providing an estimated detection limit of 65 amol for proteins expressed at 50 copies per cell.  相似文献   

5.
We present here an improved analytical method for the analysis of glycation events in proteins. Nonenzymatic glycation of an IgG2 monoclonal antibody was studied using affinity chromatography, mass spectrometry, and chemical derivatization. Analysis of both forced-degraded and bulk-drug substance (BDS) samples showed the presence of glycated protein. A new peptide mapping procedure, incorporating derivatization using sodium borohydride, allowed the development of a sensitive method for detecting and identifying the sites of modification. When combined with tandem mass spectrometry, peptides glycated by glucose showed dramatically improved MS/MS spectra as compared to underivatized controls. Using these methods we were able to map a number of glycation sites in both forced-degraded and BDS samples that were distributed across both light and heavy chain subdomains. The combination of affinity chromatography, high-resolution mass spectrometry, and a simple derivatization procedure should allow the facile analysis of glycation for other antibody and protein samples.  相似文献   

6.
Nonenzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. Herein we report improved methods for the enrichment and analysis of glycated peptides using boronate affinity chromatography and electron-transfer dissociation mass spectrometry, respectively. The enrichment of glycated peptides was improved by replacing an off-line desalting step with an online wash of column-bound glycated peptides using 50 mM ammonium acetate, followed by elution with 100 mM acetic acid. The analysis of glycated peptides by MS/MS was improved by considering only higher charged (> or = 3) precursor ions during data-dependent acquisition, which increased the number of glycated peptide identifications. Similarly, the use of supplemental collisional activation after electron transfer (ETcaD) resulted in more glycated peptide identifications when the MS survey scan was acquired with enhanced resolution. Acquiring ETD-MS/MS data at a normal MS survey scan rate, in conjunction with the rejection of both 1+ and 2+ precursor ions, increased the number of identified glycated peptides relative to ETcaD or the enhanced MS survey scan rate. Finally, an evaluation of trypsin, Arg-C, and Lys-C showed that tryptic digestion of glycated proteins was comparable to digestion with Lys-C and that both were better than Arg-C in terms of the number of glycated peptides and corresponding glycated proteins identified by LC-MS/MS.  相似文献   

7.
Miniaturized ultra high field asymmetric waveform ion mobility spectrometry (ultra-FAIMS) combined with mass spectrometry (MS) has been applied to the analysis of standard and tryptic peptides, derived from α-1-acid glycoprotein, using electrospray and nanoelectrospray ion sources. Singly and multiply charged peptide ions were separated in the gas phase using ultra-FAIMS and detected by ion trap and time-of-flight MS. The small compensation voltage (CV) window for the transmission of singly charged ions demonstrates the ability of ultra-FAIMS-MS to generate pseudo-peptide mass fingerprints that may be used to simplify spectra and identify proteins by database searching. Multiply charged ions required a higher CV for transmission, and ions with different amino acid sequences may be separated on the basis of their differential ion mobility. A partial separation of conformers was also observed for the doubly charged ion of bradykinin. Selection on the basis of charge state and differential mobility prior to tandem mass spectrometry facilitates peptide and protein identification by allowing precursor ions to be identified with greater selectivity, thus reducing spectral complexity and enhancing MS detection.  相似文献   

8.
Young JB  Li L 《Analytical chemistry》2007,79(15):5927-5934
An automated off-line liquid chromatography-matrix-assisted laser desorption ionization (LC-MALDI) interface capable of coupling both capillary and microbore LC separations with MALDI mass spectrometry (MS) and tandem mass spectrometry (MS/MS) has been developed. The interface is a combination of two concepts: analyte concentration from heated hanging droplets and impulse-driven droplet deposition of LC fractions onto a MALDI sample plate. At room temperature the interface allows the coupling of capillary LC separations (i.e., flow rate of <5 microL/min) with MALDI MS. With heating, it can be used to combine microbore LC operated at a relatively high flow rate of up to 50 microL/min with MALDI MS. The collected fractions can be analyzed by MALDI MS and MS/MS instruments, such as time-of-flight (TOF) and quadrupole-TOF MS. Performance of the interface was examined using several peptide and protein standards. It was shown that, using MALDI-TOF MS, [GLU1]-fibrinopeptide B could be detected with a total injection amount of 5 fmol to microbore LC. Chromatographic performance was also monitored. A peak width of 12 s at half-height for [GLU1]-fibrinopeptide B showed no evidence of band broadening due to the interface. The ability of the interface to mitigate ion suppression was studied using a mixture of 100 fmol of [GLU1]-fibrinopeptide B and 10 pmol of cytochrome c tryptic digest. Although fully suppressed under direct MALDI conditions, LC-MALDI analysis was able to detect the 100 fmol peptide with 10 s fraction collection. Finally, the ability to inject relatively large sample amounts to improve detectability of low-abundance peptides was illustrated in the analysis of phosphopeptides from alpha-casein tryptic digests. A digest loaded on column to 2.4 microg and analyzed by LC-MALDI MS/MS resulted in 82% sequence coverage and detection of all nine phosphoserine residues. It is concluded that, being able to handle both high- and low-flow LC separations, the impulse-driven heated-droplet interface provides the flexibility to carry out MALDI analysis of peptides and proteins depending on the information sought after, analysis speed, and sample size.  相似文献   

9.
Wang Z  Dunlop K  Long SR  Li L 《Analytical chemistry》2002,74(13):3174-3182
The availability of a suitable database is critical in a proteomic approach for bacterial identification by mass spectrometry (MS). The major limitation of the present public proteome database is the lack of extensive low-mass bacterial protein entries with masses experimentally verified for most bacteria. Here, we present a method based on mass spectrometry to create protein mass tables specifically tailored for bacterial identification. Several issues related to the detection of bacterial proteins for the purpose of database creation are addressed. Three species of bacteria, namely, Escherichia coli, Bacillus megaterium, and Citrobacter freundii, which can be found in the ambient environment, were chosen for this study. Direct matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS analysis of each bacterial extract reveals 20-29 protein components in the mass range from 2000 to 20,000 Da. HPLC fractionation of bacterial extracts followed by off-line MALDI-TOF analysis of individual fractions detects 156-423 components. Analysis of the extracts by HPLC/electrospray ionization MS shows the number of detectable proteins in the range of 46-59. Although a number of components were common to the three detection schemes employed, some unique components were found using each of these techniques. In addition, for E. coli where a large proteome database exists in the public domain, a number of masses detected by the mass spectrometric methods do not match with the proteome database. Compared to the public proteome database, the mass tables generated in this work are demonstrated to be more useful for bacterial identification in an application where the bacteria of interest have limited protein entries in the public database. The implication of this work for future development of a comprehensive mass database is discussed.  相似文献   

10.
Zhu K  Kim J  Yoo C  Miller FR  Lubman DM 《Analytical chemistry》2003,75(22):6209-6217
A method has been developed for high sequence coverage analysis of proteins isolated from breast cancer cell lines. Intact proteins are isolated using multidimensional liquid-phase separations that permit the collection of individual protein fractions. Protein digests are then analyzed by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting and by capillary electrophoresis-electrospray ionization (CE-ESI)-TOF MS peptide mapping. These methods can be readily interfaced to the relatively clean proteins resulting from liquid-phase fractionation of cell lysates with little sample preparation. Using combined sequence information provided by both mapping methods, 100% sequence coverage is often obtained for smaller proteins, while for larger proteins up to 75 kDa, over 90% coverage can be obtained. Furthermore, an accurate intact protein MW value (within 150 ppm) can be obtained from ESI-TOF MS. The intact MW together with high coverage sequence information provides accurate identification. More notably the high sequence coverage of CE-ESI-TOF MS together with the MS/MS information provided by the ion trap/reTOF MS elucidates posttranslational modifications, sequence changes, truncations, and isoforms that may otherwise go undetected when standard MALDI-MS peptide fingerprinting is used. This capability is critical in the analysis of human cancer cells where large numbers of expressed proteins are modified, and these modifications may play an important role in the cancer process.  相似文献   

11.
Tao L  Yu X  Snyder AP  Li L 《Analytical chemistry》2004,76(22):6609-6617
A protein mass mapping approach using mass spectrometry (MS) combined with an experimentally derived protein mass database is presented for rapid and effective identification of bacterial species. A prototype mass database from the protein extracts of nine bacterial species has been created by off-line high-performance liquid chromatography (HPLC) matrix-assisted laser desorption/ionization (MALDI) MS, in which the microbiological parameter of bacterial growth time is considered. A numerical method using a statistical weight factor algorithm is devised for matching the protein masses of an unknown bacterial sample against the database. The sum of these weight factors produces a corresponding summed weight factor score for each bacterial species listed in the database, and the database species producing the highest score represents the identity of the respective unknown bacterium. The applicability and reliability of this protein mass mapping approach has been tested with seven bacterial species in a single-blind study by both direct MALDI MS and HPLC electrospray ionization MS methods, and identification results with 100% accuracy are obtained. Our studies have demonstrated that the protein mass database can be rapidly established and readily adopted with relatively less dependency on experimental factors. Furthermore, it is shown that a number of proteins can be detected using a protein sample amount equivalent to an extract of less than 1000 cells, demonstrating that this protein mass mapping approach can potentially be highly sensitive for rapid bacterial identification.  相似文献   

12.
Quantitative mass spectrometry using stable isotope-labeled tagging reagents such as isotope-coded affinity tags has emerged as a powerful tool for identification and relative quantitation of proteins in current proteomic studies. Here we describe an integrated approach using both automated two-dimensional liquid chromatography/ mass spectrometry (2D-LC/MS) and a novel class of chemically modified resins, termed acid-labile isotope-coded extractants (ALICE), for quantitative mass spectrometric analysis of protein mixtures. ALICE contains a thiol-reactive group that is used to capture all cysteine (Cys)-containing peptides from peptide mixtures, an acid-labile linker, and a nonbiological polymer. The acid-labile linker is synthesized in both heavy and light isotope-coded forms and therefore enables the direct relative quantitation of peptides/proteins through mass spectrometric analysis. To test the ALICE method for quantitative protein analysis, two model protein mixtures were fully reduced, alkylated, and digested in solution separately and then Cys-containing peptides covalently captured by either light or heavy ALICE. The reacted light and heavy ALICE were mixed and washed extensively under rigorous conditions and the Cys-containing peptides retrieved by mild acid-catalyzed elution. Finally, the eluted peptides were directly subjected to automated 2D-LC/MS for protein identification and LC/MS for accurate relative quantitation. Our initial study showed that quantitation of protein mixtures using ALICE was accurate. In addition, isolation of Cys-containing peptides by the ALICE method was robust and specific and thus yielded very low background in mass spectrometric studies. Overall, the use of ALICE provides improved dynamic range and sensitivity for quantitative mass spectrometric analysis of peptide or protein mixtures.  相似文献   

13.
The proteic profiling of bovine milk produced by cows with subclinical mastitis was obtained by MALDI mass spectrometry. A simple procedure of chemical fractionation of raw milk was developed, whereby less complex fractions of proteins were obtained prior to mass spectrometric and SDS-PAGE analysis. The profiles of milk proteins thus obtained could allow the identification of either early markers of the acute phase of mastitis or endogenous peptide of innate immune response. The activity of the endogenous proteases in raw milk produced from each quarter of healthy and mastic cows was therefore assayed over 24-, 48-, 96-, and 216-h incubation at 37 degrees C at both physiological and acid pH. Sequence-specific peptides were identified for each fraction by MS/MS experiments, and all tandem mass spectra were evaluated using MASCOT database searching. The results show a specific proteolytic activity of endogenous enzyme toward beta-casein precursor (P02666), alpha-S2-casein (P02663), alpha-S1-casein (P02662), and kappa-casein (P02668).  相似文献   

14.
An integrated 10-pump eight-channel LC/MS system has been developed for automated high-throughput analysis of intact proteins in recombinant protein purification processes. The key features of the system include (1) a compact 10-pump HPLC module that uses two pumps to generate a binary gradient and 8 pumps to deliver the mixed gradient to eight independent flow channels; (2) a TOF mass spectrometer with an eight-channel multiplexed ESI interface, which records separate data for all eight channels over each HPLC run cycle; and (3) highly automated data processing software that allows unattended calculation of protein molecular weight (in Da) from original mass spectral data (in m/z). This system was used in the routine screening of fractions from preparative scale chromatography to monitor the purification process with the required mass accuracy and throughput. As an example, the production and purification of an acylated protein with a molecular weight of 9 kDa is described. Using this off-line approach, it is practical to fully characterize protein-containing fractions from column chromatography with an overall analytical throughput of 1 min/protein sample with minimum operator involvement.  相似文献   

15.
The goal of characterization of the proteome, while challenging in itself, is further complicated by the microheterogeneity introduced by posttranslational modifications such as glycosylation. A combination of liquid chromatography (LC), capillary electrophoresis (CE), and mass spectrometry (MS) offers the advantages of unique selectivity and high efficiency of the separation methods combined with the mass specificity and sensitivity of MS. In the current work, the combination of liquid-phase separations and mass spectrometry is demonstrated through the on-line coupling of electrospray ionization mass spectrometry (ESI-MS) and off-line coupling with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF-MS). LC/ESI-MS yields real-time results while maintaining the separation obtained from the LC analysis. CE/MALDI TOF-MS offers high-mass detection and extremely low detection limits. The unique separation selectivity of CE relative to reversed-phase HPLC separations of the members of a glycopeptide family was used to develop an integrated multidimensional analysis achieved by the off-line coupling of LC, CE, and MALDI TOF-MS. To demonstrate the applicability of these techniques to the characterization of the heterogeneity of posttranslational modifications present in glycoproteins, we will report on the study of the glycoforms present in a N-linked site in a single-chain plasminogen activator (DSPAα1).  相似文献   

16.
We describe a method for generating multiple small sequences from the N terminal of peptides in unseparated protein digests by stepwise thioacetylation and acid cleavage. The mass differences between a series of N-terminally degraded peptides give short sequences of defined length. Such short "sequence tags" together with the mass of the parent peptide can be used to identify the protein in a database. The sequence ladders are generated without the use of chain terminators or sample aliquoting and the degradation reagents are water soluble so that the chemistry can be carried out on peptides immobilized on C-18 reversed-phase supports without any peptide loss due to washing with organic solvents as occurs in Edman type sequencing. The entire procedure can be automated, and we describe a prototype device for the parallel analysis of multiple samples. We demonstrate the effectiveness of this chemical tagging method in a comparison with Edman sequencing, peptide mass fingerprinting, and MS/MS analysis of crude protein fractions obtained from an HPLC separation of the Escherichia coli ribosome complex which consists of 57 proteins. We show that chemical tagging is a viable first-pass high-throughput identification method to be used prior to an in depth MS/MS analysis.  相似文献   

17.
We demonstrate the use of capillary zone electrophoresis with an electrokinetically pumped sheath-flow electrospray interface for the analysis of a tryptic digest of a sample of intermediate protein complexity, the secreted protein fraction of Mycobacterium marinum. For electrophoretic analysis, 11 fractions were generated from the sample using reverse-phase liquid chromatography; each fraction was analyzed by CZE-ESI-MS/MS, and 334 peptides corresponding to 140 proteins were identified in 165 min of mass spectrometer time at 95% confidence (FDR < 0.15%). In comparison, 388 peptides corresponding to 134 proteins were identified in 180 min of mass spectrometer time by triplicate UPLC-ESI-MS/MS analyses, each using 250 ng of the unfractionated peptide mixture, at 95% confidence (FDR < 0.15%). Overall, 62% of peptides identified in CZE-ESI-MS/MS and 67% in UPLC-ESI-MS/MS were unique. CZE-ESI-MS/MS favored basic and hydrophilic peptides with low molecular masses. Combining the two data sets increased the number of unique peptides by 53%. Our approach identified more than twice as many proteins as the previous record for capillary electrophoresis proteome analysis. CE-ESI-MS/MS is a useful tool for the analysis of proteome samples of intermediate complexity.  相似文献   

18.
Acetylation of proteins on specific lysine residues by acetyltransferase enzymes is a post-translational modification for biologically relevant regulation. In this study, we proposed a strategy to determine the in vitro acetylation sites of proteins by tracing isotope-labeled acetyl groups using mass spectrometry. Isotope-labeled and unlabeled acetyl groups transferred onto the substrates in vitro result in a specific "mass difference" that can be measured by MS analysis and utilized for localization of potential acetylated peptide signals. The identification of acetylation site is facilitated by conducting MS/MS experiments on those selected signals. Acetylation reactions of substrates were performed in the presence of acetyltransferase and equal molar of isotope-labeled acetyl coenzyme A ([(13)C2-2-D3]-acetyl-CoA) and unlabeled acetyl-CoA. After enzymatic digestion, the resulting peptide mixture was fractionated by off-line, reversed-phase high-pressure liquid chromatography and the accurate mass measurement of peptides was achieved by a quadrupole/time-of-flight mass spectrometer. Signals with 5-Da (or their multiples) mass differences and equal responses were selected out by program computation. Those potential acetylated peptide signals were subjected to MS/MS analyses for determination of acetylation sites. We have used histone H3 peptide (aa 1-20), histone H2B peptide (aa 1-21), histone H2A, and histone H2B proteins as the model compounds to demonstrate the applicability of this analytical scheme for the characterization of in vitro acetylation sites.  相似文献   

19.
The development of a contactless postcolumn spotter technology capable of rapidly and accurately depositing LC eluent onto another platform (e.g., 1536-well microtiter plates) is described. Many detection methodologies are suitable for online analysis, such as mass spectrometry, UV-vis, and fluorescence. In some cases, when online analysis is less suitable, off-line postcolumn analysis is the methodology of choice and usually relies on LC-based fractionation prior to detection (e.g., MALDI-MS, Raman spectrsocopy, biochemical assays). As fractionation generally involves loss in resolution, the technology described here allows high-resolution contactless fractionation by tailoring the fractionation frequency to the chromatographic peaks and mixing in of postcolumn reagents. Droplet ejection at frequencies of at least 6 Hz could be performed in the nanoliter to low microliter range with repeatabilities of ~6%. Furthermore, multiple droplets can be ejected at the same position thereby allowing adjustment of fractionation volume and speed. The technology was evaluated, optimized, and validated prior to two proof-of-principle demonstrations comprising off-line chemical detection of injected fluorescein and off-line postcolumn biochemical detection of acetylcholine-binding protein ligands, both based on 1536-well plate reader analysis.  相似文献   

20.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号