首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
生命周期评价(LCA)作为一种能全程评估产业链和产品环境影响、资源消耗、净能效率的重要方法,近年来得到了越来越多的关注,也开始被用于生物柴油清洁生产领域,能为产业可持续提供决策依据。对木本生物柴油的LCA体系、评估模型与方法、国内外木本生物柴油LCA研究现状进行了综述。结果显示:木本生物柴油在燃烧阶段相比石化柴油具有清洁排放的优点,但整个生命周期的排放未必清洁,主要与我国燃煤发电、化肥和辅料生产排放有关;木本生物柴油产业作为低碳产业,温室效应和能源消耗均低于石化柴油,整个生命周期中以种植和生产阶段的排放和消耗最大并针对性提出改进措施;未来我国木本生物柴油生命周期评价应通过建设产业标准数据库、更多注重不同原料不同工艺的对比评估、兼顾经济性和生态服务功能的评估进一步拓展木本生物柴油研究的深度和广度。  相似文献   

2.
The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.  相似文献   

3.
Future energy technologies will be key for a successful reduction of man-made greenhouse gas emissions. With demand for electricity projected to increase significantly in the future, climate policy goals of limiting the effects of global atmospheric warming can only be achieved if power generation processes are profoundly decarbonized. Energy models, however, have ignored the fact that upstream emissions are associated with any energy technology. In this work we explore methodological options for hybrid life cycle assessment (hybrid LCA) to account for the indirect greenhouse gas (GHG) emissions of energy technologies using wind power generation in the UK as a case study. We develop and compare two different approaches using a multiregion input-output modeling framework - Input-Output-based Hybrid LCA and Integrated Hybrid LCA. The latter utilizes the full-sized Ecoinvent process database. We discuss significance and reliability of the results and suggest ways to improve the accuracy of the calculations. The comparison of hybrid LCA methodologies provides valuable insight into the availability and robustness of approaches for informing energy and environmental policy.  相似文献   

4.
Employing life cycle greenhouse gas (GHG) emissions as a key performance metric in energy and environmental policy may underestimate actual climate change impacts. Emissions released early in the life cycle cause greater cumulative radiative forcing (CRF) over the next decades than later emissions. Some indicate that ignoring emissions timing in traditional biofuel GHG accounting overestimates the effectiveness of policies supporting corn ethanol by 10-90% due to early land use change (LUC) induced GHGs. We use an IPCC climate model to (1) estimate absolute CRF from U.S. corn ethanol and (2) quantify an emissions timing factor (ETF), which is masked in the traditional GHG accounting. In contrast to earlier analyses, ETF is only 2% (5%) over 100 (50) years of impacts. Emissions uncertainty itself (LUC, fuel production period) is 1-2 orders of magnitude higher, which dwarfs the timing effect. From a GHG accounting perspective, emissions timing adds little to our understanding of the climate impacts of biofuels. However, policy makers should recognize that ETF could significantly decrease corn ethanol's probability of meeting the 20% GHG reduction target in the 2007 Energy Independence and Security Act. The added uncertainty of potentially employing more complex emissions metrics is yet to be quantified.  相似文献   

5.
To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input-output LCA method with a global link input-output model that defines a global system boundary grounded in a simplified multiregional input-output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input-output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains.  相似文献   

6.
While the use of biodiesel appears to be a promising alternative to petroleum fuel, the replacement of fossil fuel by biofuel may not bring about the intended climate cooling because of the increased soil N2O emissions due to N-fertilizer applications. Using a life cycle assessment approach, we assessed the influence of soil nitrous oxide (N2O) emissions on the life cycle global warming potential of the production and combustion of biodiesel from canola oil produced in a semiarid climate. Utilizing locally measured soil N2O emissions, rather than the Intergovernmental Panel on Climate Change (IPCC) default values, decreased greenhouse gas (GHG) emissions from the production and combustion of 1 GJ biodiesel from 63 to 37 carbon dioxide equivalents (CO2-e)/GJ. GHG were 1.1 to 2.1 times lower than those from petroleum or petroleum-based diesel depending on which soil N2O emission factors were included in the analysis. The advantages of utilizing biodiesel rapidly declined when blended with petroleum diesel. Mitigation strategies that decrease emissions from the production and application of N fertilizers may further decrease the life cycle GHG emissions in the production and combustion of biodiesel.  相似文献   

7.
This article presents the concept, calculation method, and first results of the "Raw Material Consumption" (RMC) economy-wide material flow indicator for the European Union (EU). The RMC measures the final domestic consumption of products in terms of raw material equivalents (RME), i.e. raw materials used in the complete production chain of consumed products. We employed the hybrid input-output life cycle assessment method to calculate RMC. We first developed a highly disaggregated environmentally extended mixed unit input output table and then applied life cycle inventory data for imported products without appropriate representation of production within the domestic economy. Lastly, we treated capital formation as intermediate consumption. Our results show that services, often considered as a solution for dematerialization, account for a significant part of EU raw material consumption, which emphasizes the need to focus on the full production chains and dematerialization of services. Comparison of the EU's RMC with its domestic extraction shows that the EU is nearly self-sufficient in biomass and nonmetallic minerals but extremely dependent on direct and indirect imports of fossil energy carriers and metal ores. This implies an export of environmental burden related to extraction and primary processing of these materials to the rest of the world. Our results demonstrate that internalizing capital formation has significant influence on the calculated RMC.  相似文献   

8.
Renewable and low carbon fuel standards being developed at federal and state levels require an estimation of the life cycle carbon intensity (LCCI) of candidate fuels that can substitute for gasoline, such as second generation bioethanol. Estimating the LCCI of such fuels with a high degree of confidence requires the use of probabilistic methods to account for known sources of uncertainty. We construct life cycle models for the bioconversion of agricultural residue (corn stover) and energy crops (switchgrass) and explicitly examine uncertainty using Monte Carlo simulation. Using statistical methods to identify significant model variables from public data sets and Aspen Plus chemical process models,we estimate stochastic life cycle greenhouse gas (GHG) emissions for the two feedstocks combined with two promising fuel conversion technologies. The approach can be generalized to other biofuel systems. Our results show potentially high and uncertain GHG emissions for switchgrass-ethanol due to uncertain CO? flux from land use change and N?O flux from N fertilizer. However, corn stover-ethanol,with its low-in-magnitude, tight-in-spread LCCI distribution, shows considerable promise for reducing life cycle GHG emissions relative to gasoline and corn-ethanol. Coproducts are important for reducing the LCCI of all ethanol fuels we examine.  相似文献   

9.
Increasing concerns about greenhouse gas (GHG) emissions in the United States have spurred interest in alternate low carbon fuel sources, such as natural gas. Life cycle assessment (LCA) methods can be used to estimate potential emissions reductions through the use of such fuels. Some recent policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S., without, however, acknowledging and addressing the uncertainty and variability prevalent in LCA. Natural gas is a particularly interesting fuel since it can be used to meet various energy demands, for example, as a transportation fuel or in power generation. Estimating the magnitudes and likelihoods of achieving emissions reductions from competing end-uses of natural gas using LCA offers one way to examine optimal strategies of natural gas resource allocation, given that its availability is likely to be limited in the future. In this study, the uncertainty in life cycle GHG emissions of natural gas (domestic and imported) consumed in the U.S. was estimated using probabilistic modeling methods. Monte Carlo simulations are performed to obtain sample distributions representing life cycle GHG emissions from the use of 1 MJ of domestic natural gas and imported LNG. Life cycle GHG emissions per energy unit of average natural gas consumed in the U.S were found to range between -8 and 9% of the mean value of 66 g CO(2)e/MJ. The probabilities of achieving emissions reductions by using natural gas for transportation and power generation, as a substitute for incumbent fuels such as gasoline, diesel, and coal were estimated. The use of natural gas for power generation instead of coal was found to have the highest and most likely emissions reductions (almost a 100% probability of achieving reductions of 60 g CO(2)e/MJ of natural gas used), while there is a 10-35% probability of the emissions from natural gas being higher than the incumbent if it were used as a transportation fuel. This likelihood of an increase in GHG emissions is indicative of the potential failure of a climate policy targeting reductions in GHG emissions.  相似文献   

10.
In order to manage strategies to curb climate change, systemic benchmarking at a variety of production scales and methods is needed. This study is the first life cycle assessment (LCA) of a large-scale, vertically integrated organic dairy in the United States. Data collected at Aurora Organic Dairy farms and processing facilities were used to build a LCA model for benchmarking the greenhouse gas (GHG) emissions and energy consumption across the entire milk production system, from organic feed production to post-consumer waste disposal. Energy consumption and greenhouse gas emissions for the entire system (averaged over two years of analysis) were 18.3 MJ per liter of packaged fluid milk and 2.3 kg CO(2 )equiv per liter of packaged fluid milk, respectively. Methane emissions from enteric fermentation and manure management account for 27% of total system GHG emissions. Transportation represents 29% of the total system energy use and 15% of the total GHG emissions. Utilization of renewable energy at the farms, processing plant, and major transport legs could lead to a 16% reduction in system energy use and 6.4% less GHG emissions. Sensitivity and uncertainty analysis reveal that alternative meat coproduct allocation methods can lead to a 2.2% and 7.5% increase in overall system energy and GHG, respectively. Feed inventory data source can influence system energy use by -1% to +10% and GHG emission by -4.6% to +9.2%, and uncertainties in diffuse emission factors contribute -13% to +25% to GHG emission.  相似文献   

11.
In addition to available country or site-specific life cycle studies on Jatropha biodiesel we present a generic, location-independent life cycle assessment and provide a general but in-depth analysis of the environmental performance of Jatropha biodiesel for transportation. Additionally, we assess the influence of changes in byproduct use and production chain. In our assessments, we went beyond the impact on energy requirement and global warming by including impacts on ozone layer and terrestrial acidification and eutrophication. The basic Jatropha biodiesel system consumes eight times less nonrenewable energy than conventional diesel and reduces greenhouse gas emissions by 51%. This result coincides with the lower limit of the range of reduction percentages available in literature for this system and for other liquid biofuels. The impact on the ozone layer is also lower than that provoked by fossil diesel, although eutrophication and acidification increase eight times. This study investigates the general impact trends of the Jatropha system, although not considering land-use change. The results are useful as a benchmark against which other biodiesel systems can be evaluated, to calculate repayment times for land-use change induced carbon loss or as guideline with default values for assessing the environmental performance of specific variants of the system.  相似文献   

12.
This article presents a cradle-to-grave analysis of the United States fluid milk supply chain greenhouse gas (GHG) emissions that are accounted from fertilizer production through consumption and disposal of milk packaging. Crop production and on-farm GHG emissions were evaluated using public data and 536 farm operation surveys. Milk processing data were collected from 50 dairy plants nationwide. Retail and consumer GHG emissions were estimated from primary data, design estimates, and publicly available data. Total GHG emissions, based primarily on 2007 to 2008 data, were 2.05 (90% confidence limits: 1.77–2.4) kg CO2e per kg milk consumed, which accounted for loss of 12% at retail and an additional 20% loss at consumption. A complementary analysis showed the entire dairy sector contributes approximately 1.9% of US GHG emissions. While the largest GHG contributors are feed production, enteric methane, and manure management; there are opportunities to reduce impacts throughout the supply chain.  相似文献   

13.
Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.  相似文献   

14.
菜籽油生物柴油与0#柴油氧化安全性比较   总被引:9,自引:1,他引:9  
徐鸽  邬国英 《中国油脂》2004,29(12):71-73
以菜籽油生物柴油(RME)为原料,分别在氧气流量、金属介质以及常温贮存时,对其氧化安定性进行考察,定时取样,测定其过氧化值、运动黏度和酸值,并与0#柴油进行比较.结果表明,氧气流量的变化,对RME和O#柴油的氧化安定性影响不大且趋势一致;在铜等金属介质存在时,RME的氧化安定性下降,而0#柴油则变化不大;在常温下贮存两个多月以后,两种油氧化安定性仍较好.  相似文献   

15.
Based on the analysis of cross sections of railroad ties, which were in use for up to 46 years, inventory, emission factors and total yearly emissions of creosote, PAH and phenols from the Swiss railway network were determined. During the service time of a railroad tie of 20 to 30 years, roughly 5 kg creosote are emitted. PAH emissions are in the order of about 0.5 kg (sum of 16 EPA-PAH) and occur as emissions of the volatile 2- and 3-ring PAH (such as naphthalene, acenaphthylene, acenaphthene, anthracene, fluorene, and phenanthrene). Emissions of phenolic compounds are in the range of 10 g for each tie. According to our study, about 1710 t of creosote components, 139 t of EPA-PAH and 4 t of phenolic compounds are emitted by the creosoted ties of the Swiss railway network, every year. Based on these results and on a previous study on environmental life cycle assessment (LCA) of railway ties made of creosoted beech, prestressed concrete and sectional steel, the environmental effects caused by wooden ties were compared with the environmental effects of rail and road traffic. The PAH emissions from wooden ties have an enormous influence on the two effect oriented impact categories photochemical ozone creation and human toxicity. For all other impact categories, the PAH emissions are not relevant. If the road traffic (including its upstream processes) is included in the LCA, it is clearly dominating all impact categories. The use of new creosotes according to the WEI-C standard (lower benzo[a]pyrene content, less evaporation) improves the rating in the impact category photochemical ozone creation. Less than 14% of the total impact are caused by PAH emissions if creosote WEI-C is used, compared to more than 50% for creosote WEI-A. The LCA also demonstrates that the most effective measure to reduce the potential of photochemical ozone creation and human toxicity is a reduction of the road traffic.  相似文献   

16.
The objective of this study was to conduct a life-cycle assessment (LCA) of greenhouse gas (GHG) emissions from a typical nongrazing dairy production system in Eastern Canada. Additionally, as dairying generates both milk and meat, this study assessed several methods of allocating emissions between these coproducts. An LCA was carried out for a simulated farm based on a typical nongrazing dairy production system in Quebec. The LCA was conducted over 6 yr, the typical lifespan of dairy cows in this province. The assessment considered 65 female Holstein calves, of which 60heifers survived to first calving at 27mo of age. These animals were subsequently retained for an average of 2.75 lactations. Progeny were also included in the analysis, with bulls and heifers in excess of replacement requirements finished as grain-fed veal (270kg) at 6.5mo of age. All cattle were housed indoors and fed forages and grains produced on the same farm. Pre-farm gate GHG emissions and removals were quantified using Holos, a whole-farm software model developed by Agriculture and Agri-Food Canada and based on the Intergovernmental Panel for Climate Change Tier 2 and 3methodologies with modifications for Canadian conditions. The LCA yielded a GHG intensity of 0.92kg of CO(2) Eq/kg of fat- and protein-corrected milk yield. Methane (CH(4)) accounted for 56% of total emissions, with 86% originating from enteric fermentation. Nitrous oxide accounted for 40% of total GHG emissions. Lactating cows contributed 64% of total GHG emissions, whereas calves under 12mo contributed 10% and veal calves only 3%. Allocation of GHG emissions between meat and milk were assessed as (1) 100% allocation to milk, (2) economics, (3) dairy versus veal animals, and (4) International Dairy Federation equation using feed energy demand for meat and milk production. Comparing emissions from dairy versus veal calves resulted in 97% of the emissions allocated to milk. The lowest allocation of emissions to milk (78%) was associated with the International Dairy Federation equation. This LCA showed that greatest reductions in GHG emissions would be achieved by applying mitigation strategies to reduce enteric CH(4) from the lactating cow, with minimal reductions being achievable in young stock. Choice of coproduct allocation method can also significantly affect the relative allocation of GHG emissions to milk and meat.  相似文献   

17.
随着全球应对气候变化进程加速,食品工业作为总产出最高的制造业,其碳排放影响力引起各方关注。本文通过建立一种基于投入产出法的碳排放核算模型,对我国2020年食品工业的碳排放进行了核算和评估。结果显示,我国食品工业碳排放影响力显著,直接碳排放量位居制造业第六,是传统高耗能行业外碳排放量最高的产业;间接碳排放量占比超90%,对电力供应业、石油及煤炭加工业的碳排放拉动量明显高于其他行业,均超过2亿吨;出口贸易中,亚洲国家对我国食品工业的碳排放拉动作用明显。基于食品行业碳排放特点,可通过提高食品制造过程的能源利用率、综合利用二氧化碳、优化贸易结构等方式降低食品工业的直接碳排放量和间接碳排放量。本文对我国食品等传统制造业,科学有效核算碳排放量,识别行业间碳排放拉动影响程度,具有一定的借鉴意义。  相似文献   

18.
The presence of variability in life cycle analysis (LCA) is inherent due to both inexact LCA procedures and variation of numerical inputs. Variability in LCA needs to be clearly distinguished from uncertainty. This paper uses specific examples from the production of diesel and jet fuels from 14 different feedstocks to demonstrate general trends in the types and magnitudes of variability present in life cycle greenhouse gas (LC-GHG) inventories of middle distillate fuels. Sources of variability have been categorized as pathway specific, coproduct usage and allocation, and land use change. The results of this research demonstrate that subjective choices such as coproduct usage and allocation methodology can be more important sources of variability in the LC-GHG inventory of a fuel option than the process and energy use of fuel production. Through the application of a consistent analysis methodology across all fuel options, the influence of these subjective biases is minimized, and the LC-GHG inventories for each feedstock-to-fuel option can be effectively compared and discussed. By considering the types and magnitudes of variability across multiple fuel pathways, it is evident that LCA results should be presented as a range instead of a point value. The policy implications of this are discussed.  相似文献   

19.
Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.  相似文献   

20.
This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号