首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanostructured Fe40Ni40P14B6 alloy ingots of 3–5 mm in diameter could be synthesized by a metastable liquid state spinodal decomposition method. For undercooling ΔT > 260 K, the microstructure of the undercooled specimen had exhibited liquid state spinodal decomposition in the undercooled liquid state. The microstructure could be described as two intertwining networks with small grains dispersed in them. For undercooling ΔT > 290 K, the overall microstructure of the specimen changed into a granular morphology. The average grain sizes of the small and large grains are ≅ 30 nm and ≅ 80 nm, respectively. These prepared samples are soft magnets with saturation magnetization B s ≅ 0.744 T. Supported by the Hong Kong Research Grants Council the National Natural Science Foundation of China (Grant No. 50861007) and Xinjiang University Doctoral Research Start-up Grant (Grant No. BS050102)  相似文献   

2.
Cd(S1-xSex) pigments (red to yellow) were synthesized by precipitate-hydrothermal method. The structure, morphology and hue of the powder were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX) and CIE chromaticity. The optimum synthesis conditions were obtained and reaction mechanism was further analyzed as well. The results show that molar ratio of S to Se, pH value and hydrothermal reaction conditions have great effects on the hues of the pigments. Pigments with vivid hues are obtained under the conditions that pH value is about 13.0, hydrothermal reaction condition is at 140 ℃ for 4 h or at 160 ℃ for 6 h. The reaction mechanism is that Se^2- of Cd(S1-xSex) substitutes S^2- of CdS and then forms a continuous solid solution.  相似文献   

3.
β-Ga2O3 cone-like nanowires have been in-situ grown on the surface of gallium grains and films by heating gallium substrates at 750–1000°C for 2 h in air. The controllable synthesis of β-Ga2O3 nanowires with different diameters and lengths was achieved by adjusting the heating temperature and time. The as-synthesized products were characterized by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results showed that the β-Ga2O3 nanowires are single crystalline with a monoclinic structure and have a controllable diameter and length in the range of 30–100 nm and 0.5–1.5 μm, respectively. A possible mechanism was also proposed to account for the formation of β-Ga2O3 cone-like nanowires. Photoluminescence spectra of the β-Ga2O3 nanowires obtained at different temperatures were measured at room temperature, and a strong blue photoluminescence with peaks at 430 and 460 nm and a weak red photoluminescence with peak at 713 nm were observed. The blue light emission intensity decreases with increasing the reaction temperature, however, the red light emission intensity hardly changes. The blue and red light emissions originate from the recombination of an electron on an oxygen vacancy with a hole on a gallium-oxygen vacancy pair and the nitrogen dopants, etc., respectively. Supported by the National Natural Science Foundation of China (Grant No. 20573072) and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060718010)  相似文献   

4.
Granular CuO-CeO2-MnO x /γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnO x /γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnO x /γ-Al2O3 catalysts is 300–400 °C. The catalysts maintain nearly 100% NO conversion at 350 °C. The °C NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnO x /γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process. Foundation item: Projects (50776037, 50721005) supported by the National Natural Science Foundation of China  相似文献   

5.
Roman scattering measurement of ( 1 - x ) GeS2-x Ga2S3 system glasses was conducted in order to understand the microstructural change caused by the addition of Ga2S3 . According to the change of Raman spectra with the addition of Ga2S3, two main structural transformations were deduced : the gradual enhancement of ethane- like structural units S3 Ge- GeS3 ( 250 cm ^- 1) and S3 Ga- GaS3 (270 cm ^- 1 ) and the appearance of charge imbalanced units [ Ga2 S2 ( S1/2 )4 ]^2- and [Ga( S1/2 )4 ]^- . And this change of structural aspect seems to give as a clue to understanding the cause of the increased rare-earth solubility.  相似文献   

6.
By means of X-ray diffraction profile analysis of three different composition Fe−Mn−Si alloys, the relationship between stacking fault probabilityP sf with the concentrations of constituents in alloys, 1/P sf =540.05+23.70× Mn wt%-138.74×Si wt%, was determined. According to the nucleation mechanism by stacking fault in this alloy, the equation between critical driving force †G c andP sf G c=67.487+0.177 5/P sf (J/mol), was made. Therefore, the relationship between critical driving force and compositions was established. Associated with the thermodynamic calculation, theM s of fcc (γ)→ hcp(ε) martensitic transformation in any suitable composition Fe−Mn−Si shape memory alloys can be predicted and results seem reasonable as compared with some experimental data. Project supported by the National Science Foundation of China (Grant No. 59671023).  相似文献   

7.
β-Ga2O3 Cr single crystals were grown by floating zone technique. Absorption spectra and fluorescence spectra were measured at room temperature. The values of field splitting parameter Dq and Racah parameter B were obtained by the peak values of absorption spectra. The value 10Dq/B=23.14 manifests that in -Ga2O3 crystals Cr3 ions are influenced by low energy crystal field. After high temperature annealing in air, the Cr3 intrinsic emission was enhanced and the green luminescence disappeared. The strong and broad 691 nm emission was obtained at 420 nm excitation due to the electron transition occurred from 4T2 to 4A2. The studies manifest that the β-Ga2O3 crystals have the potential application for tunable laser.  相似文献   

8.
Fine Al(OH)3 crystals were aggregated from supersaturated aluminate solution in the batch reaction tanks. By means of laser particle size analyzer and scanning electron microscopy, the influences of temperature and initial molar ratio of Na2O to Al2O3 (aK) on agglomeration of fine seed in Bayer process were investigated. The results show that agglomeration is almost finished in 8 h, and seeds with size less than 2 μm are easily aggregated together, and almost disappear in 8 h under the optimal process conditions. In the aluminate solution with the same moderate initial aK, when the reaction temperature reaches 75 ℃, the secondary nucleation does not occur, and the effect of agglomeration is better. And at the same reaction temperature, when the initial aK is 1.62, the initial supersaturation of aluminate solution is moderate, the binders on the surfaces of the seed are enough to maintain the agglomeration process, and the agglomeration degree is better. From SEM images, agglomeration mainly occurs in the fine particles, the combinations among the fine particles are loose and the new formed coarse crystal shapes are irregular.  相似文献   

9.
A series of novel red phosphors LiEu1−x Y x (WO4)0.5(MoO4)1.5 (x=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8) were synthesized by conventional solid state reaction method with the starting materials: WO3, MoO3, Eu2O3, Li2CO3 and Y2O3. The spectrum and the crystal structure of the phosphors were characterized by F-4500 and XRD respectively. Meanwhile the effects of flux and Y3+ concentration on the crystal structure and luminescent properties of the phosphors were investigated. The results showed that the optimal content of flux () was 1 wt% and the optimal doping concentration of Y3+ was 0.5 mol. The emission spectrum showed the most intense peak was located at 615 nm, which corresponds to the 5 D 07 F 2 transition of Eu3+ and that Eu3+ occupied the lattice site of noncentrosymmetric environment in the scheelite phases. The excitation spectrum displayed that these phosphors could be effectively excited by ultraviolet (UV) (396 nm) and blue (466 nm) light, nicely in correspondence with the widely applied output wavelengths of ultraviolet or blue LED chips. The influence of flux on the luminescent properties of LiEu0.5Y0.5(WO4)0.5(MoO4)1.5 phosphor was analyzed. The XRD spectra indicated that the flux could help to crystallize the phosphor, and no other phases were formed except the tetragonal. When adding flux, the relative intensity of LiEu0.5Y0.5(WO4)0.5(MoO4)1.5 became much stronger and the average particle size of the phosphor decreased. Supported by the Key Programs for Science and Technology Development of Hubei Province (Grant No. 2005AA105A05)  相似文献   

10.
The magnetic properties and structures of [CoPt/Ag] n , multilayer films deposited by DC magnetron sputtering have been studied. During the deposited process, two kinds of deposited sequences, that is Ag layer (FDAG) first deposited or CoPt layer (FDCP) first deposited, have been chosen. The results show that the microstructures and coercivities were strongly influenced by the deposited sequence and the thickness of films. The coercivities of [Ag/CoPt] n with FDAG are obviously higher than those of [CoPt/Ag] n with FDCP. Especially, when the thickness of films is 8 nm, the difference of coercivities between the FDAG film and the FDCP film is the largest. It is possibly because Ag plays a role of underlayer in FDAG multilayers, which can induce both the transformation from fcc to fct and the oriented growth along c-axis. In addition, δM curves reveal that the [CoPt/Ag]8 multilayer, film has a lower intergrain interaction than the CoPt/Ag bilayer film.  相似文献   

11.
(ZrO2) x (SiO2)1−x (Zr-Si-O) films with different compositions were deposited on p-Si(100) substrates by using pulsed laser deposition technique. X-ray photoelectron spectra (XPS) showed that these films remained amorphous after annealing at 800°C with RTA process in N2 for 60 s. The XPS spectra indicated that Zr-Si-O films with x=0.5 suffered no obvious phase separation after annealing at 800°C, and no interface layer was formed between Zr-Si-O film and Si substrate. While Zr-Si-O films with x >0.5 suffered phase separation to precipitate ZrO2 after annealing under the same condition, and SiO2 was formed at the interface. To get a good interface between Zr-Si-O films and Si substrate, Zr-Si-O films with bi-layer structure (ZrO2)0.7(SiO2)0.3/(ZrO2)0.5(SiO2)0.5/Si was deposited. The electrical properties showed that the bi-layer Zr-Si-O film is of the lowest equivalent oxide thickness and good interface with Si substrate. Supported by the National Nature Science Foundation of China (Grant No. 60636010) and the National Basic Research Program of China (“973” Program) (Grant No. 2004CB619004)  相似文献   

12.
Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor Al(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3 · 9H2O and 0.16 mol/L (NH4)2CO3 · H2O reaction solutions, according to the volume ratio 1.33, adding 0.024% (volume fraction) surfactant PEG600, and reacting at 40 °C, 1 000 r/min stirring rate for 15 min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80°C for 8 h, final calcined at 800 °C for 1 h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, O H 7 -FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131. 35 m2/g in BET specific surface area, 7 – 11 nm in pore diameter, and not lower than 99.93% in purity. Foundation item: Project(03JJY3015) supported by the Natural Science Foundation of Hunan Province  相似文献   

13.
The humanoid robot SJTU-HR1’s concept is introduced and its characteristics tree is given. The basic states for SJTU-HR1 are proposed, including lying, sitting, standing and handstanding, abstracted from the daily exercises of human beings. The G F (generalized function) set theory is exploited to achieve the kinematic characteristics of the interested EEs (end-effectors) of SJTU-HR1 for the lying states. Finally, the results show that the large amounts of states can be described using the abbreviations in a systematic manner. Although we have focused on the application of the G F set theory to humanoid robots, particularly the SJTU-HR1, this methodology can also be applied to quadruped robots and hexapedal robots, especially when the desired tasks are complex. Supported by the Natural Basic Research Program of China (“973”) (Grant No. 2006CB705400), the National Natural Science Foundation of China (Grant Nos. 60534020, 30770538), Joint Research Fund for Young Scholars in China and Abroad (Grant No. 50728503), and the Graduate Innovation Foundation of Shanghai Jiao Tong University  相似文献   

14.
The chemical structures of four types of superplasticizers (SPs) and their adsorptive behaviors on β-C2S were investigated. The adsorption properties of SPs on β-C2S were measured and the relationship between the adsorption quantity and the specific surface of β-C2S was analyzed. The experimental results show that the adsorption quantity increases with the surface area increase of β-C2S, but the adsorption quantity per surface area is similar, which means that the main adsorbent is β-C2S itself. Polycarboxylic ester (PCE) showed the highest adsorption amount on β-C2S, followed by β-naphthalene sulfonates (NSF) and formaldehyde-acetone condensates sulfonates (FAS), amino sulphonate (AS) showed the least adsorption amount on β-C2S. PCE affected the surface potential of β-C2S particles in water differently in comparison with other types of SPs. The adsorption capacity of SPs on β-C2S is determined by factors such as molecular structure, functional groups and molecular weight of SPs.  相似文献   

15.
Single crystal GaN films of hexagonal modification have been fabricated on Al2O3/Si (001) substrates via a low pressure metalorganic chemical deposition (LP-MOCVD) method. the full width at half-maximum of (0002) X-ray diffraction peak for the GaN film 1.1 μm thick was 72 arcmin, and the mosaic structure of the film was the main cause of broadening to the X-ray diffraction peak. At room temperature, the photoluminescence (PL) spectrum of GaN exhibited near band edge emission peaking at 365 nm. Project supported by the “863” Advanced materials Committee of China and the Planning Commission of China.  相似文献   

16.
Fatigue-free Bi3.2La0.8Ti3O12 ferroelectric thin films were successfully prepared on p-Si (100) substrates using metalorganic solution deposition process. The orientation and formation of 5-layers thin films were studied under different processing conditions using XRD. Experimental results indicate that increase in annealing time at 700 °C after preannealing for 10 min at 400 °C can remarkably increase (200)-orientation of the films derived from the precursor solutions with two contents of citric acid. Meanwhile, high content of citric acid increases the film thickness and is conducive to the a-orientation of the films with the preannealing, and low concentration of the solution is conducive to the c-orientation of the films without the preannealing.  相似文献   

17.
This work is concerned with the problem ofL 2 gain disturbance attenuation for nonlinear systems and nonlinear robust control for power systems. In terms of the recurrence design approach proposed, the nonnegative solution of dissipative inequality and the storage function of nonlinearH control for a generator excitation system are acquired. From this storage function, the excitation controller is constructed. Moreover, simulation results manifest the effectiveness of this design method.  相似文献   

18.
The spinel LiMn2O4 used as cathode materials for lithium-ion batteries was synthesized by mechano-chemistry fluid activation process, and modified by doping rare-earth Sm. Thesting of X-ray diffraction, cyclic voltammograms, charge-discharge and SEM was carried out for LiMn2O4 cathode materials and the modified materials. The results show that the cathode materials doped rare earth Li x Mn2−y Sm z O4 (0.95⩽x⩽1.2, 0⩽y⩽0.3, 0⩽z⩽0.2) exhibit standard spinel structure, high reversibility of electrochemistry and excellent properties of charge-discharge. In EC: DMC(1 : 1)+1 mol/L LiPF6 electrolyte with discharge capacity more than 130 mA · h/g, and its capacity is deteriorated less than 15% after 300 cycles at room temperature and less than 20% after 200 cycles at 55°C. At the same time, Crystal Field Theory was applied to explain the function and mechanism of doped rare earth element. Foundation item: Project (02JJY2081) supported by the Natural Science Foundation of Hunan Province  相似文献   

19.
A water-in-oil (W/O) microemulsion composed of Triton X-100, n-hexanol, n-hexane and water solution with hydrochloric acid was prepared. K3Fe(CN)6 was added in as a water-soluble electroactive probe, and its electrochemical behavior was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It is found that the H+ concentration of the water phase has a great effect on the conductivity of the W/O microemulsion, and hence influences the electrochemical behavior of K3Fe(CN)6. When the pH value of water phase is about 7, the electrical conductivity of the W/O microemulsion is only 1.2×10−6 S/cm, and K3Fe(CN)6 almost cannot react at the glassy carbon electrode. But when the H+ concentration is more than 3 mol/L, the W/O microemulsion has a good electrical conductivity and K3Fe(CN)6 shows good electrochemical performance in it. The results of CV and EIS studies indicate that the electrochemical behavior of Fe(CN)6 3−/Fe(CN)6 4− in the W/O microemulsion is different from that in the aqueous solution. This may be due to the unique liquid structure of the W/O microemulsion and the unique mass transfer in the W/O microemulsion. Foundation item: Projects(20673036, J0830415) supported by the National Natural Science Foundation of China; Projects(05JT1026, 2007JT2013) supported by the Science Technology Project of Hunan Province, China  相似文献   

20.
The phase structure and electrical properties of pure and La2O3-doped Bi-InO3-PbTiO3 (BI-PT) ceramics were studied respectively. In (1 -x)BI-xPT (x=0.72-0.80) ceramics, the stability of tetragonal phase increased with increasing x, and pure perovskite structure was obtained for x=-0.80 ceramics. The phase transition temperature range was between 575 ℃ and 600 ℃ for x=0.72-0.80 ceramics, higher than that of PT (-490 ℃). The c/a ratio almost linearly decreased with increasing La2O3 content in x-0.80 ceramics. It is believed that Pb^2+ vacancies were formed by La^3+ substituting Pb^2+ in La2O3-doped BI-PT ceramics. Tc shifted to lower temperature by 30 ℃/mol% La2O3. The maximum dielectric constant 8557 around 559 ℃ was exhibited in 0.5mol%-doped BI-0.80PT ceramics. La2O3-doped ceramics could be poled resulting from decreasing of c/a ratio and improving of dielectric loss and resistivity. The maximum piezoelectric coefficient d33 was 12 pC/N for 2mol%-doped BI-0.80PT ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号