首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine the effect of the soluble guanylyl cyclase inhibitors methylene blue and LY83583 (6-anilino-5,8-quinolinedione) on relaxation and increases in intracellular guanosine 3',5'-cyclic monophosphate (cGMP) concentration ([cGMP]i) induced by sodium nitroprusside, 3-morpholinosydnonimine (SIN-1) and diethylamine-nitric oxide (NO) in porcine tracheal smooth muscle in vitro. We measured (1) the effect of NO donors on isometric force and [cGMP]i and (2) the ability of methylene blue and LY83583 to antagonize these effects. In muscle strips contracted with carbachol (0.1-0.3 microM), both sodium nitroprusside and diethylamine-NO caused relaxation and an increase in [cGMP]i. By contrast, SIN-1 caused a relaxation which was not associated with a concomitant increase in [cGMP]i. Methylene blue (10 microM) and LY83583 (10 microM) completely blocked the increase in [cGMP]i induced by sodium nitroprusside and diethylamine-NO; however substantial relaxation remained. It is concluded that in porcine airway smooth muscle, (1) relaxation induced by some NO donors may occur without a concomitant increase in [cGMP]i; and (2) whereas relaxation induced by some NO donors may be associated with increases in [cGMP]i, the relaxation is not completely dependent upon it.  相似文献   

2.
Nitric oxide (NO) plays a crucial role in the regulation of kidney function and metabolism. Our previous study showed that dexamethasone, one of several known selective inhibitors of inducible nitric oxide synthase (NOS), had a stimulatory effect on soluble guanylyl cyclase in the glomeruli of rat kidney. However, in the presence of dexamethasone, the atrial natriuretic factor (ANF)-dependent system remained suppressed. The aim of the present study was to investigate whether inhibition of synthesis of endogenous NO modulates the activity of the guanylyl cyclase system(s) in glomeruli. In these studies, rats were injected with a non-selective NOS inhibitor, N-omega-nitro-L-arginine methyl ester (NAME; NAME-group), or saline solution (controls; C-group). Creatinine clearance (C(Cr)), and plasma and urinary nitrate/nitrite (NOx-) levels decreased in the NAME-group, but plasma and urinary guanosine 3',5'-cyclic monophosphate (cGMP) contents were unchanged. In the presence of 0.1 microM ANF, synthesis of cGMP in the NAME-group exceeded threefold the cGMP production in the C-group. In addition, the pre-contracted glomeruli of the NAME-group were fully relaxed at 0.1 microM ANF, but glomeruli obtained from the C-group were relaxed in the presence of a 10 times higher dose of ANF. The increased sensitivity of glomeruli to ANF was possibly due to the more than doubled activity of particulate guanylyl cyclase (pGC) in the NAME-group in comparison with the C-group. In the presence of 100 microM sodium nitroprusside (SNP), soluble guanylyl cyclase (sGC) generated significantly lower cGMP production in the NAME-group than in the C-group (1.61 +/- 0.33 vs. 2.91 +/- 0.69 nmol/mg protein/10 min, respectively). These results demonstrate that inhibition of the synthesis of endogenous NO may also have an inhibitory effect on the activity of sGC. In addition, increased activity of the pGC and ANF-dependent system appears to be compensatory to the altered activity of soluble guanylyl cyclase.  相似文献   

3.
Sheep learn to recognize the odours of their lambs within two hours of giving birth, and this learning involves synaptic changes within the olfactory bulb. Specifically, mitral cells become increasingly responsive to the learned odour, which stimulates release of both glutamate and GABA (gamma-aminobutyric acid) neurotransmitters from the reciprocal synapses between the excitatory mitral cells and inhibitory granule cells. Nitric oxide (NO) has been implicated in synaptic plasticity in other regions of the brain as a result of its modulation of cyclic GMP levels. Here we investigate the possible role of NO in olfactory learning. We find that the neuronal enzyme nitric oxide synthase (nNOS) is expressed in both mitral and granule cells, whereas the guanylyl cyclase subunits that are required for NO stimulation of cGMP formation are expressed only in mitral cells. Immediately after birth, glutamate levels rise, inducing formation of NO and cGMP, which potentiate glutamate release at the mitral-to-granule cell synapses. Inhibition of nNOS or guanylyl cyclase activity prevents both the potentiation of glutamate release and formation of the olfactory memory. The effects of nNOS inhibition can be reversed by infusion of NO into the olfactory bulb. Once memory has formed, however, inhibition of nNOS or guanylyl cyclase activity cannot impair either its recall or the neurochemical release evoked by the learned lamb odour. Nitric oxide therefore seems to act as a retrograde and/or intracellular messenger, being released from both mitral and granule cells to potentiate glutamate release from mitral cells by modulating cGMP concentrations. We propose that the resulting changes in the functional circuitry of the olfactory bulb underlie the formation of olfactory memories.  相似文献   

4.
Nitric oxide (NO) is produced by the enzyme nitric oxide synthase (NOS) and has been implicated in inter- and intracellular communication in the nervous system. The present study was undertaken to assess the effects of sodium nitroprusside (SNP) and hydroxylamine (HOA), NO donors, on a dopamine (DA)-induced K+ current in identified Aplysia neurons using voltage-clamp and pressure ejection techniques. Bath-applied SNP (10-25 microM) reduced the DA-induced K+ current without affecting the resting membrane conductance and holding current. The DA-induced K+ current also was inhibited by the focal application of 200 microM HOA to the neuron somata. The DA-induced K+ current suppressing effects of SNP and HOA are completely reversible. Pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a specific inhibitor of NO-stimulated guanylate cyclase, and hemoglobin (50 microM), a nitric oxide scavenger, decreased the SNP-induced inhibition of the DA-induced current. In contrast, intracellular injection of 1 mM guanosine 3',5'-cyclic monophosphate (cGMP) or bath-applied 3-isobutyl-1-methylxanthine (IBMX; 50 microM), a non-specific phosphodiesterase inhibitor, inhibited the DA-induced current, mimicking the effect of the NO donors. These results demonstrate that SNP and HOA inhibit the DA-induced K+ current and that the mechanism of NO inhibition of the DA-induced current involves cGMP-dependent protein kinase.  相似文献   

5.
Monitoring of extracellular cGMP during intracerebral microdialysis in freely moving rats permits the study of the functional changes occurring in the glutamate receptor/nitric oxide (NO) synthase/guanylyl cyclase pathway and the relationship of these changes to animal behaviour. When infused into the rat hippocampus in Mg2+-free medium, cyclothiazide, a blocker of desensitization of the AMPA-preferring receptor, increased cGMP levels. The effect of cyclothiazide (300 microM) was abolished by the NO synthase inhibitor L-NARG (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (100 microM). During cyclothiazide infusion the animals displayed a pre-convulsive behaviour characterized by frequent "wet dog shakes" (WDS). Neither L-NARG nor ODQ decreased the WDS episodes. Both cGMP and WDS responses elicited by cyclothiazide were prevented by blocking NMDA receptor function with the glutamate site antagonist CGS 19755 (100 microM), the channel antagonist MK-801 (30 microM) or Mg2+ ions (1 mM). The AMPA/kainate receptor antagonists DNQX (100 microM) and NBQX (100 microM) abolished the WDS episodes but could not inhibit the cyclothiazide-evoked cGMP response. DNQX or NBQX (but not MK-801) elevated, on their own, extracellular cGMP levels. The cGMP response elicited by the antagonists appears to be due to prevention of a glutamate-dependent inhibitory GABAergic tone, since infusion of bicuculline (50 microM) caused a strong cGMP response. The results suggest that (a) AMPA/kainate receptors linked to the NO/cGMP pathway in the hippocampus (but not NMDA receptors) are tonically activated and kept in a desensitized state by endogenous glutamate; (b) blockade of AMPA/kainate receptor desensitization by cyclothiazide leads to endogenous activation of NMDA receptors; (c) the hippocampal NO/cGMP system is under a GABAergic inhibitory tone driven by non-NMDA ionotropic receptors; (d) the pre-convulsive episodes observed depend on hippocampal NMDA receptor activation but not on NO and cGMP production.  相似文献   

6.
The effect of nitric oxide (NO) donors on high-voltage-activated Ca2+ channels in insulin-secreting RINm5F cells was investigated using the patch-clamp technique in the whole-cell configuration. Sodium nitroprusside (SNP, 2-400 microM) induced a dose-dependent reduction in Ba2+ currents with maximal inhibition of 58%. The IC50 for SNP was 45 microM. A different NO donor, (+/-)S-nitroso-N-acetylpenicillamine (SNAP, 500 microM), also produced a 50% decrease in current amplitude. When 200 microM SNP was administered together with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidozoline-1-oxyl-3-oxide (carboxy-PTIO, 300 microM), the Ba2+ current inhibition was lowered to 7%. Administration of 500 microM 8-bromoguanosine 3':5'-cyclic monophosphate sodium salt (8-Br-cGMP) mimicked the effects of SNP, causing a comparable decrease (56%) in peak-current amplitude. When soluble guanylyl cyclase was blocked by 10 microM 1H-[1,2, 4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ), the inhibitory effect of 200 microM SNP was reduced from 39% to 15%. The SNP-induced current decrease was 36% of controls after the blockade of L-type Ca2+ channels and 30% in the presence of 2.5 microM omega-conotoxin-MVIIC. These data indicate that NO inhibits both L-type and P/Q-type Ca2+ channels in RINm5F cells, probably by an increase in the intracellular levels of cGMP. NO may then significantly influence the Ca2+-dependent release of hormones from secretory cells as well as that of neurotransmitters from nerve terminals.  相似文献   

7.
In some but not all arterial beds, smooth muscle cell calcium-activated K+ channels (KCa channels) play a central role in the mediation of the vasodilator response to nitric oxide (NO) and other nitrates. We investigated the effect of nitrates on KCa channels in the relaxation of human coronary arteries by means of isometric contraction experiments in arterial rings. We also measured whole-cell currents in freshly isolated human coronary artery vascular smooth muscle cells via the patch-clamp technique. Sodium nitroprusside, diethylamine-nitric oxide complex sodium salt and isosorbide mononitratre completely relaxed rings preconstricted with 5 microM serotonin and produced dose-dependent relaxations of 5 microM serotonin-preconstricted human rings. The relaxations were inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-oxyl 3-oxide (10 microM), which neutralizes nitric oxide. The KCa channel blockers iberiotoxin (100 nM) and tetraethylammonium ions (1 mM) significantly inhibited SNP-induced relaxations of human coronary arteries. Moreover, in the patch-clamp experiments, SNP (1 microM) stimulated KCa currents and spontaneous transient outward K+ currents carried by Ca spark activated KCa channels. The SNP-induced (1 microM) KCa current was strongly inhibited by iberiotoxin (100 nM). These data show that activation of KCa channels in smooth muscle cells contributes to the vasodilating actions of nitrates and nitric oxide in human coronary arteries. This finding may have unique clinical significance for the development of antianginal and antihypertensive drugs that selectively target K+ channels and Ca sparks.  相似文献   

8.
Although endothelium-derived hyperpolarizing factor (EDHF) activity has been demonstrated in arteries from various species, EDHF has not been chemically identified, nor its mechanism of action characterized. To elucidate this mechanism, we tested the effect of EDHF on large-conductance Ca2+-activated K+ (K(Ca)) channels in porcine coronary artery smooth muscle cells. By using a patch-clamp technique, single-channel currents were recorded in cultured smooth muscle cells; the organ bath also contained a strip of porcine coronary with endothelium, which served as the source of endothelium-derived relaxing factor(s) including EDHF. Exposure of endothelium to 10(-6) M bradykinin activated K(Ca) channels in cultured smooth muscle cells in cell-attached patches. When the experiment was performed in the presence of 10 microM indomethacin and 30 microM N(G)-nitro-L-arginine (L-NNA), which block the generation of prostaglandin I2 (PGI2) and NO, respectively, K(Ca) channel activity was stimulated by bradykinin, indicating the direct involvement of EDHF in K(Ca) channel stimulation. Neither 10 microM methylene blue nor 25 microM Rp-cAMPS inhibited bradykinin-induced K(Ca) channel activity. In inside-out patches, the addition of bradykinin to the solution was without effect on K(Ca) channel activation. However, in the presence of 0.5 mM guanosine triphosphate (GTP) and 1.0 mM adenosine triphosphate (ATP) in the bath solution, K(Ca) channels was activated by bradykinin. In outside-out patches, the addition of bradykinin also increased K(Ca) channel activity, when GTP and ATP were added to the pipette solution. The addition of GDP-beta-S (100 microM) in the cytosolic solution completely blocked the activation K(Ca) channels induced by bradykinin in inside-out and outside-out patches. Pretreatment with 30 microM quinacrine, a phospholipase A2 inhibitor, or 3 microM 17-octadecynoic acid (17-ODYA), a cytochrome P450 inhibitor, in addition to indomethacin and L-NNA, abolished bradykinin-stimulated K(Ca) channel activity in cell-attached patches. Both 14,15-epoxyeicosatrienoic acid (EET) and 11,12-EET increased the open probabilities of K(Ca) channels in cell-attached patches. These results suggest that EDHF, released from endothelial cells in response to bradykinin, hyperpolarizes smooth muscle cells by opening K(Ca) channels. Furthermore, our data suggest that EDHF is an endothelium-derived cytochrome P450 metabolite of arachidonic acid. The effect of EDHF on K(Ca) channels is not associated with an increase of cAMP and cGMP. The activation of K(Ca) channels appears to be due to the activation of GTP-binding protein.  相似文献   

9.
Nitric oxide (NO) is an important modulator of contractile activity in various tissues. The aim of the present study was to investigate the possible existence of an NO system within the human uterine cervix and to study the effects of NO on the cervix in early pregnancy. Cervical tissue specimens were obtained from 24 women in connection with first trimester legal abortion. NADPH diaphorase staining was used to identify nitric oxide synthase activity within the cervical tissue. Cylindrical tissue specimens were mounted in organ bath chambers for isometric registration of contractile activity. The presence of a functional NO system in the cervix was investigated by adding either sodium nitroprusside or spermine NONOate, two different NO donors, or 8-bromo cGMP, an analogue of the second messenger cyclic guanosine monophosphate (cGMP), to the organ baths. Positive NADPH diaphorase staining was clearly observed in the walls of blood vessels, in cervical smooth muscle cells, and cells scattered in the connective tissue. The NO donating drugs sodium nitroprusside and spermine NONOate both caused a dose-dependent inhibition of spontaneous contractile activity with significant inhibition at concentrations of 10(-5) and 10(-7) M respectively. Furthermore, the participation of NO in the regulation of cervical contractility was indicated by a significant concentration-dependent inhibition of spontaneous contractions when 8-bromo cGMP (10(-5)-10(-3) M) was added to the organ baths. The study indicates the existence of an NO system within the human uterine cervix and a role of NO in control of cervical function.  相似文献   

10.
This investigation characterized the smooth muscle relaxing effect of a novel nitric oxide (NO)-releasing substance, GEA 3175 (1,2,3,4-oxatriazolium, 3-(3-chloro-2-methylphenyl)-5-[[(4-methylphenyl)sulfonyl]amino], hydroxide inner salt) on guinea-pig trachea. GEA 3175 caused a concentration-dependent relaxation of tracheal smooth muscle precontracted with acetylcholine. This effect was reversed by both okadaic acid, an inhibitor of serine/threonine-specific phosphatases, and iberiotoxin, an inhibitor of Ca2+-activated K+ channels. Furthermore, GEA 3175 had a relaxation potency similar to that of the commonly used NO-donor, S-nitroso-N-acetyl-penicillamine. On the contractile response provoked by electrical field stimulation, GEA 3175 induced a long-lasting relaxation which persisted even after repeated washing. The relaxing effect of GEA 3175 was associated with rises in guanosine 3':5'-cyclic monophosphate (cGMP). In time course studies, cGMP continued to increase with incubation time after stimulation with GEA 3175 and there was a significant elevation of cGMP even after washing. In contrast, incubation with S-nitroso-N-acetyl-penicillamine caused a transient rise in cGMP. The present investigation showed that GEA 3175 evokes long-lasting effects on contractile responses and cGMP levels in guinea-pig trachea. Our results indicate that the relaxing effect of GEA 3175 occurs through a mechanism involving phosphatases and iberiotoxin-sensitive K+ channels.  相似文献   

11.
Recently we reported that Vibrio vulnificus hemolysin, an exotoxin produced by V. vulnificus, dilates rat thoracic aorta via elevated cGMP levels without affecting nitric oxide synthase. We investigated the mechanism further by observing the guanylyl cyclase activities in cytosolic, membrane, unfractionated, or reconstituted preparations. Hemolysin did not activate guanylyl cyclase in the membrane or cytosolic fraction, while it activated guanylyl cyclase in unfractionated or reconstituted preparation. The increased activity was not inhibited by the HS-142-1, a microbial polysaccharide which antagonizes atrial natriuretic peptide receptor, or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor. However, it was attenuated by 6-(phenylamino)-5,8-quinolinedione (LY 83.583), which inhibits the catalytic domain of both guanylyl cyclases, and by cholesterol, which blocks hemolysin-incorporation into the membrane. Removing ATP, a cofactor of particulate guanylyl cyclase, attenuated the activation and ATPgammaS, a non-phosphorylating analog, restored it. These results suggest that V. vulnificus hemolysin activates particulate guanylyl cyclase via hemolysin incorporation into the vascular smooth muscle cell membrane in cooperation with certain unidentified cytosolic component(s).  相似文献   

12.
Nitric oxide (NO) has been implicated in the anxiolytic-like behavioral effects of nitrous oxide (N?O). This study was conducted to determine whether NO activates a soluble guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway in the behavioral response to N?O in the light-dark exploration test. In mice pretreated with an sGC inhibitor, the increased light-compartment activity normally induced by N?O was significantly attenuated. Pretreatment with a cGMP phosphodiesterase inhibitor antagonized the anxiogenic effect of 15% N?O and enhanced the anxiolytic effect of 25% N?O, implying that cGMP reduces anxiety. These preliminary findings suggest that a signaling pathway involving NO and cGMP may mediate the behavioral effects of N?O. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Previous studies have demonstrated that nitric oxide (NO) influences Leydig cell function. Here we provide evidence for NO production and activity in seminiferous tubules and blood vessels of the human testis. By immunohistochemistry, the soluble guanylyl cyclase (sGC), the intracellular NO receptor, and the second messenger, cyclic guanosine monophosphate (cGMP), were detected in myofibroblasts of the peritubular lamina propria in Sertoli cells, as well as in endothelial and smooth muscle cells of testicular blood vessels. Performed with isolated tubules and blood vessels, the biological activity of sGC could be proved by cGMP generation in response to treatments with the NO donor, sodium nitroprusside. The endothelial and neuronal subtypes of NO synthase (NOS) were localized immunohistochemically to the same cell types that express sGC and cGMP. In isolated tubules and vessels, the presence of endothelial NOS and neuronal NOS was confirmed by immunoblotting, and NOS activity was demonstrated by decreased cGMP production upon incubation with the NOS inhibitor L-nitro arginine methylester. These findings show that peritubular cells, Sertoli cells, and testicular blood vessels may be sites of NO production and activity, possibly involved in relaxation of seminiferous tubules and blood vessels to modulate sperm transport and testicular blood flow, respectively.  相似文献   

14.
Carbon monoxide (CO) is an activator of soluble guanylyl cyclase and is implicated as a neuronal messenger. CO production, nitric oxide synthase (NOS) activity, and guanosine 3',5'-monophosphate (cGMP) levels were quantitated in cerebellar granule cell cultures. Metabolic labeling experiments enabled the direct measurement of neuronal CO production in vitro. CO production is significant, and peaked during early stages of culture. NOS activity and cGMP levels synchronously increased as cells matured. Whereas inhibition of NOS depleted cGMP in mature cultures, inhibitors of CO production potentiated the nitric oxide (NO)-mediated cGMP increase. Exogenous CO at similar concentrations to endogenous levels blocked the NO-mediated cGMP increase. These results directly demonstrate that endogenous neuronal CO production is high and indicate that while NO is the major regulator of cGMP in these neurons, CO may modulate the NO-cGMP signaling system.  相似文献   

15.
The effects of nitrosothiol depleting compounds (p-hydroxymercuribenzoate, iodacetamide and ethacrynic acid), a guanylyl cyclase inhibitor (1H[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, ODQ) and nitric oxide (NO) scavenger agents (xanthine/xanthine oxidase and 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; carboxy-PTIO) on light-induced photorelaxation in rat thoracic aorta were investigated. Photorelaxation responses were decreased in the presence of nitrosothiol depleting compounds suggesting S-nitrosothiols as the tissue source of the NO, whereas reduction in photorelaxation by the guanylyl cyclase inhibitor and NO scavenger agents indicates involvement of both NO and cGMP in photorelaxation. In addition the sensitivity of photorelaxation to the voltage-gated potassium channel (KV) inhibitor, 4-aminopyridine, indicates that photorelaxation is mediated via a NO/cGMP-dependent, and, perhaps, direct light, activation of KV channels.  相似文献   

16.
1. The role of endothelial factors and potassium channels in the action of the pineal hormone melatonin to potentiate vasoconstrictor responses was investigated in the isolated perfused tail artery of the rat. 2. Melatonin (100 nM) potentiated contractile responses to both adrenergic nerve stimulation and alpha1-adrenoceptor stimulation by phenylephrine. After removal of the endothelium, melatonin no longer caused potentiation. 3. The potentiating effect of melatonin was also lost when nitric oxide synthase was inhibited with L-NAME (10 nM). Thus potentiating effects depend on the presence of nitric oxide released by the endothelium. However, melatonin did not affect relaxation responses to acetylcholine in endothelium-intact arteries, nor did melatonin modulate relaxing responses to sodium nitroprusside in endothelium-denuded arteries. While melatonin does not appear to modulate agonist-induced release of nitric oxide nor its effect, melatonin may modulate nitric oxide production induced by flow and shear stress. 4. When the Ca2+-activated K+ channel opener, NS 1619 (10 microM), was present, potentiating effects of melatonin were restored in endothelium-denuded vessels. However, addition of the opener of ATP-sensitive K+ channels, cromakalim (3 microM), did not have the same restorative effect. Furthermore, addition of a blocker of Ca2+-activated K+ channels, tetraethylammonium (1 mM), significantly attenuated potentiating effects of melatonin. These findings support the hypothesis that melatonin inhibits the activity of large conductance Ca2+-activated K+ channels to produce its potentiating effects. 5. Thus in the rat perfused tail artery, potentiation of constriction by melatonin depends on the activity of both endothelial factors and Ca2+-activated K+ channels. Our findings suggest that melatonin inhibits endothelial K+ channels to decrease flow-induced release of nitric oxide as well as block smooth muscle K+ channels to enhance vascular tone.  相似文献   

17.
1. To assess the action of nitric oxide (NO) and NO-donors on K+ current evoked either by voltage ramps or steps, patch clamp recordings were made from smooth muscle cells freshly isolated from secondary and tertiary branches of the rat mesenteric artery. 2. Inside-out patches contained channels, the open probability of which increased with [Ca2+]i. The channels had a linear slope conductance of 212+/-5 pS (n = 12) in symmetrical (140 mM) K+ solutions which reversed in direction at 4.4 mV. In addition, the channels showed K+ selectivity, in that the reversal potential shifted in a manner similar to that predicted by the Nernst potential for K+. Barium (1 mM) applied to the intracellular face of the channel produced a voltage-dependent block and external tetraethylammonium (TEA; at 1 mM) caused a large reduction in the unitary current amplitude. Taken together, these observations indicate that the channel most closely resembled BK(Ca). 3. In five out of six inside-out patches, NO (45 or 67 microM) produced an increase in BK(Ca) activity. In inside-out patches, BK(Ca) activity was also enhanced in some patches with 100 or 200 microM 3-morpholino-sydnonimine (SIN-1) (4/11) and 100 microM sodium nitroprusside (SNP) (3/8). The variability in channel opening with the NO donors may reflect variability in the release of NO from these compounds. 4. In inside-out patches, 100 microM SIN-1 failed to increase BK(Ca) activity (in all 4 patches tested), while at a higher (500 microM) concentration SIN-1 had a direct blocking effect on the channels (n = 3). NO applied directly to inside-out patches increased (P < 0.05) BK(Ca) activity in two patches. 5. In the majority of cells (6 out of 7), application of NO (45 or 67 microM) evoked an increase in the amplitude of whole-cell currents in perforated patches. This action was not affected by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ). An increase in whole-cell current was also evoked with either of the NO donors, SIN-1 or SNP (each at 100 microM). With SIN-1, the increase in current was blocked with the BK(Ca) channel blocker, iberiotoxin (50 nM). 6. With conventional whole-cell voltage clamp, the increase in the outward K+ current evoked with SIN-1 (50-300 microM) showed considerable variability. Either no effect was obtained (11 out of 18 cells), or in the remaining cells, an average increase in current amplitude of 38.7+/-10.2% was recorded at 40 mV. 7. In cell-attached patches, large conductance voltage-dependent K+ channels were stimulated by SIN-1 (100 microM) applied to the cell (n = 5 patches). 8. These data indicate that NO and its donors can directly stimulate BK(Ca) activity in cells isolated from the rat mesenteric artery. The ability of NO directly to open BK(Ca) channels could play an important functional role in NO-induced relaxation of the vascular smooth muscle cells in this small resistance artery.  相似文献   

18.
This study addressed the role of guanylyl cyclase (GC) and phosphodiesterase (PDE) in interleukin (IL)-1 activation of human articular chondrocytes. The GC inhibitors LY83583 and methylene blue dose-dependently inhibited IL-1-induced nitric oxide (NO) production, inducible NO synthase (iNOS) protein, and mRNA expression. These effects of GC inhibition were consistent with the rapid induction of cGMP by IL-1, which reached maximal levels after 5 min. The effects of GC inhibitors were selective as they did not reduce IL-1-induced cyclooxygenase II protein and mRNA. An inhibitor specific for soluble GC did not affect IL-1-induced NO production, and activators of soluble GC did not induce NO. However, the expression of iNOS mRNA was induced by atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP), activators of particulate GC, indicating that particulate rather than soluble guanylyl cyclases were involved in iNOS induction. The expression of iNOS mRNA and the production of NO were induced by a slowly hydrolyzable analog of cGMP, 8-bromo-cGMP, but not by nonhydrolyzable analog, dibutyryl cGMP, suggesting that PDE rather than cGMP-dependent protein kinase mediates the cGMP effects. Chondrocytes contained extensive cGMP PDE activity. This had PDE5 biochemical features and an inhibitor profile consistent with PDE5. Furthermore, the nonisoformspecific PDE inhibitor IBMX and PDE5-specific inhibitors suppressed IL-1-induced NO release and iNOS mRNA expression. PDE5 mRNA was constitutively expressed in chondrocytes. In addition to increasing PDE5 activities, IL-1 treatment reduced the sensitivity of PDE5 to several pharmacological inhibitors by up to 50-fold. In summary, inhibitors of either GC or PDE5 prevented IL-1 induction of iNOS; IL-1 increased the rates of both cGMP generation and hydrolysis; and exogenous PDE hydrolyzable cGMP analog induced iNOS and NO. These results suggest that increased cGMP metabolic flux is sufficient to induce iNOS, and GC and PDE5 activities are required for IL-1 induction of iNOS expression via increases in coupled cGMP synthesis and hydrolysis.  相似文献   

19.
We examined potential mechanisms by which angiotensin subtype-2 (AT2) receptor stimulation induces net fluid absorption and serosal guanosine cyclic 3',5'-monophosphate (cGMP) formation in the rat jejunum. L-arginine (L-ARG) given intravenously or interstitially enhanced net fluid absorption and cGMP formation, which were completely blocked by the nitric oxide (NO) synthase inhibitor, N-nitro-L-arginine methylester (L-NAME), but not by the specific AT2 receptor antagonist, PD-123319 (PD). Dietary sodium restriction also increased jejunal interstitial fluid cGMP and fluid absorption. Both could be blocked by PD or L-NAME, suggesting that the effects of sodium restriction occur via ANG II at the AT2 receptor. L-ARG-stimulated fluid absorption was blocked by the soluble guanylyl cyclase inhibitor 1-H-[1,2,4]oxadiazolo[4, 2-alpha]quinoxalin-1-one (ODQ). Cyclic GMP-specific phosphodiesterase in the interstitial space decreased extracellular cGMP content and prevented the absorptive effects of L-ARG. Angiotensin II (ANG II) caused an increase in net Na+ and Cl- ion absorption and 22Na+ unidirectional efflux (absorption) from the jejunal loop. In contrast, intraluminal heat-stable enterotoxin of Escherichia coli (STa) increased loop cGMP and fluid secretion that were not blocked by either L-NAME or ODQ. These findings suggest that ANG II acts at the serosal side via AT2 receptors to stimulate cGMP production via soluble guanylyl cyclase activation and absorption through the generation of NO, but that mucosal STa activation of particulate guanylyl cyclase causes secretion independently of NO, thus demonstrating the opposite effects of cGMP in the mucosal and serosal compartments of the jejunum.  相似文献   

20.
Male rats put in the presence of a receptive female rat that they can see, hear and smell, but cannot touch, show penile erection episodes. These non-contact erections occur concomitantly with an increase in nitric oxide production in the paraventricular nucleus of the hypothalamus, as detected by the increase in the NO2- and NO3- concentration in the paraventricular dialysate obtained from these males by in vivo microdialysis. NO2- concentration increased from 0.81+/-0.12 to 2.51+/-0.43 microM and that of NO3- from 4.50+/-0.73 to 8.31+/-2.3 microM. The NO2- increase was prevented by the nitric oxide synthase inhibitor NG-nitro-L-arginine methylester (20 microg) given unilaterally in the paraventricular nucleus, which also prevented non-contact erections. In contrast, the nitric oxide scavenger haemoglobin (20 microg) prevented the NO2- increase, but not non-contact erections; while the guanylate cyclase inhibitor methylene blue (20 microg) was ineffective on either response. NO2-and NO3- concentration was also increased in the paraventricular dialysate of male rats during in copula penile erections, that is, when sexual activity was allowed with the receptive females. As found with non-contact erections, NG-nitro-L-arginine methylester prevented NO2- increase and impaired copulatory behaviour; haemoglobin prevented NO2- increase only; and methylene blue was ineffective on either response. The present results confirm that nitric oxide is a physiological mediator of penile erection at the level of the paraventricular nucleus of the hypothalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号