共查询到20条相似文献,搜索用时 0 毫秒
1.
基于对多种界面缺陷的一致表达,建立了能够反映复合材料层合结构界面缺陷的有限元模型.通过引入横向剪切变形函数来反映界面粘贴状况;对于界面局部缺陷问题,通过缺陷边缘处相邻单元的几何矩阵的简单匹配来满足缺陷边缘的连续条件.只需简单选择界面柔度系数,可方便地处理界面理想粘贴、弱粘贴和脱层三种界面粘贴状况.有限元形式简单,仅涉及个节点自由度.算例验证了有限元模型的精度,讨论了各种参数时界面缺陷对结构的影响. 相似文献
2.
用基于Mindlin 板理论的有限元方法进行了带脱层损伤的复合材料层板的屈曲载荷分析。为了获得物理上可能的屈曲模态, 即避免上下脱层的相互贯穿, 在接触区域引入一些假想弹簧, 并给出了这些假想弹簧刚度系数的计算公式和接触计算的迭代格式, 通过这些弹簧对原始刚度矩阵进行修正可以有效地求解屈曲载荷特征值分析中的接触问题。数值计算结果表明了本算法的有效性和引入接触分析对这类屈曲分析的重要性。同时, 还对脱层的大小、形状、位置和脱层的纤维铺层方向对屈曲载荷的影响进行了研究。 相似文献
3.
本文建立了一个层间弱粘贴复合材料层板热弹性脱层模型.该模型建立在两个描述层间弱粘贴的基本假设基础上.层间位移不连续由层间粘贴的物理关系来描述,表现为层间位移跳跃值与层间残余横向应力的关系;层间温度不连续由层间传热薄层来描述,并据此给出一个计算层间温度跳跃值的计算公式,表现为温度跳跃值与层间横向张开量之间的关系.在此假设基础上,根据平衡方程和静态传热方程导出了正交柱面弯曲层板热弹性脱层解.算例显示了层间弱粘贴对层板热弹性响应的影响. 相似文献
4.
本文建立了一个层间弱粘贴复合材料层板热弹性脱层模型。该模型建立在两个描述层间弱粘贴的基本假设基础上。层间位移不连续由层间粘贴的物理关系来描述,表现为层间位移跳跃值与层间残余横向应力的关系;层间温度不连续由层间传热薄层来描述,并据此给出一个计算层间温度跳跃值的计算公式,表现为温度跳跃值与层间横和开量之间的关系。在此假设基础上,根据平衡方程和静态传热方程导出了正交柱面弯曲层板,热弹性脱层解。算例显示了层间弱粘贴对层板热弹性响应的影响。 相似文献
5.
本文基于高阶变形理论和修正型Hahn-Tsai非线性本构模型,提出一种复合材料层合板非线性热屈曲分析方法。针对四边简支反对称角铺设复合材料层合板,导出了非线性热屈曲临界温度封闭解。数值结果表明:材料非线性能显著降低层合板临界温度。 相似文献
6.
7.
8.
利用纤维Z-pins的细观力学模型构造了相应的Z-pin单元,结合考虑一阶剪切变形的梁单元,建立了用于分析含非对称分层采用Z-pins增韧的端部开口弯曲试件(End notched flexure,ENF)的有限元模型,并在分层裂纹面上引入接触单元以防止分析过程中2个分层子梁在端部开口处的相互嵌入。通过数值算例分析了Z-pins对含非对称分层的ENF试件Ⅱ型层间韧性的增强作用。参数分析表明,当分层位置靠近层合板的表面时,Z-pins的增韧作用明显下降,Z-pins对Ⅱ型层间韧性的增强作用主要由2个分层子层中较薄子层决定,但另一分层的厚度也对Ⅱ型层间韧性有一定的影响。 相似文献
9.
10.
该文研究了玻璃纤维编织复合材料制成的可收卷层板在大变形条件下的弯曲静力性能和疲劳性能。通过弯曲静力试验得到了试验件在大变形条件下的应变和位移的关系;通过有限元模拟静力试验并与试验结果对照,确定了疲劳试验的载荷;研究了在大变形条件下不同铺层层板的弯曲疲劳寿命及失效模式和相同铺层层板的疲劳寿命曲线。结果表明:复合材料层板在大变形弯曲时具有明显的非线性行为,且(±45°)铺层层板弯曲疲劳性能明显优于(0°/90°)铺层层板;在最小应变和最大应变比不变的情况下,相同铺层层板的弯曲最大应变和对数疲劳寿命之间存在线性关系。 相似文献
11.
12.
本文通过预应力法调整ARALL层板残余应力,研究了自由层板与两种预应力层板的Bell-剥离特性。结果表明,结层板施加预应力有效地降低了其中的残余应力,无论自由层板还是预应力层板,剥离所造成的断裂均为多重混合型破坏,其实质是劳纶/胶粘剂界面破坏和纤维自身的破坏,给芳纶施加预应力有利于Bell-剥离强度的提高,同时预应力的施加使剥离面上的纤维破坏状态发生改变。 相似文献
13.
14.
15.
针对T700/TR1219B碳纤维/环氧树脂复合材料,在不同湿/热/力耦合条件下进行层间剪切实验,对比分析性能衰减规律,通过峰值力纳米力学模量成像技术定量表征界面尺寸变化,并结合微观断口形貌分析探究湿热损伤机制.结果表明,T700/TR1219B的层间剪切性能受湿、热场影响显著,当吸湿率为2%时,层间剪切强度从原样的7... 相似文献
16.
在复合材料层板结构中铺设形状记忆合金丝,利用形状记忆合金弹性模量随相变状态的不同变化,受限回复时可以产生很大的回复力的特点,除改善和增强复合材料层板本身性能外,还能使复合材料层板产生弯曲,扭转等形状变化。如何正确有效地计算其力学特性,是复合材料层板形状控制以及设计和应用形状记忆合金复合材料智能结构的基础。本文在复合材料层板的有限元分析中考虑形状记忆合金丝的热力学特性以及大变形回复的影响,并通过实验进行分析和对比,得到一些有意义的结论。 相似文献
17.
对无损伤及含冲击损伤的复合材料层合板进行了剪切稳定性试验,基于数字图像相关方法 (Digital image correlation,DIC)对层合板屈曲后屈曲行为进行了实时测量。试验结果表明:引入冲击损伤后,复合材料层合板剪切屈曲波形、屈曲载荷无明显变化,失效模式转变,承载能力下降了9.69%。随后,基于断裂面失效理论,建立了考虑剪切非线性效应的复合材料渐进损伤失效模型,并对复合材料层合板剪切失效过程进行了模拟。模型采用软化夹杂法将冲击损伤等效简化,直接将损伤区的几何边界信息写入材料模型中,不需要对冲击损伤区进行切割,从而保证了整体网格质量。与试验结果对比发现:模型考虑剪切非线性对屈曲载荷预测无明显影响,对后屈曲承载能力的预测精度影响较大,不考虑剪切非线性效应时的误差可达20%以上;软化夹杂法可以有效地模拟冲击损伤,预测的含冲击损伤的复合材料层合板的屈曲载荷、破坏载荷误差分别为-3.17%、-1.27%。 相似文献
18.
19.