首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The anaerobic ammonium-oxidizing (ANAMMOX) bacteria were enriched from a rotating disk reactor (RDR) biofilm in semi-batch cultures. Based on fluorescence in situ hybridization (FISH) analysis, this enrichment led to a relative population size of 36% ANAMMOX bacteria. Phylogenetic analysis revealed that all the detected clones were related to the previously reported ANAMMOX bacteria, Candidatus Brocadia anammoxidans (AF375994), with 92% sequence similarity. Furthermore, we successfully developed a real-time polymerase chain reaction (PCR) assay to quantify populations of ANAMMOX bacteria in the enrichment cultures. For this real-time PCR assay, PCR primer sets targeting 16S ribosomal RNA genes of ANAMMOX bacteria were designed and used. The quantification range of this assay was 6 orders of magnitude, from 8.9x10(1) to 8.9x10(6) copies per PCR, corresponding to the detection limit of 3.6x10(3) target copies mL(-1). A significant correlation was found between the increase in copy numbers of 16S rRNA gene of ANAMMOX bacteria and the increase in nitrogen removal rates in the enrichment cultures. Quantifying ANAMMOX bacterial populations in the enrichment culture made it possible to estimate the doubling time of the enriched ANAMMOX bacteria to be 3.6 to 5.4 days. The real-time PCR assay gave comparable population sizes in the enrichment cultures with the FISH results. These results suggest that the real-time PCR assay developed in this study is useful and reliable for quantifying the populations of ANAMMOX bacteria in environmental and engineering samples.  相似文献   

2.
A comparative study was conducted on the start-up performance and biofilm development in two different biofilm reactors with aim of obtaining partial nitritation. The reactors were both operated under oxygen limited conditions, but differed in geometry. While substrates (O2, NH3) co-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (Ki) and maximum specific growth rate of ammonia-oxidizing (AOB) and nitrite-oxidizing bacteria (NOB) were the determinant parameters in nitrogen conversion simulations. The modeling simulations demonstrated that Ki had stronger effects on nitrogen conversion at lower (0-10 m d−1) than at the higher values (>10 m d−1). The experimental results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO < 0.1 mg L−1) and high pH (8.0-8.3), nitrite accumulation was triggered more significantly in co-diffusion than counter-diffusion biofilms by increasing the applied ammonia loading from 0.21 to 0.78 g NH4+-N L−1 d−1. The co- and counter-diffusion biofilms displayed very different spatial structures and population distributions after 120 days of operation. AOB were dominant throughout the biofilm depth in co-diffusion biofilms, while the counter-diffusion biofilms presented a stratified structure with an abundance of AOB and NOB at the base and putative heterotrophs at the surface of the biofilm, respectively.  相似文献   

3.
A novel biofilm reactor-alternating pumped sequencing batch biofilm reactor (APSBBR)-was developed to treat synthetic dairy wastewater at a volumetric chemical oxygen demand (COD) loading rate of 487 g COD m(-3) d(-1) and an areal loading rate of 5.4 g COD m(-2) d(-1). This biofilm reactor comprised two tanks, Tanks 1 and 2, with two identical plastic biofilm modules in each tank. The maximum volume of bulk fluid in the two-tank reactor was the volume of one tank. The APSBBR was operated as a sequencing batch biofilm reactor with five operational phases-fill (25 min), anoxic (9 h), aerobic (9 h), settle (6 h) and draw (5 min). The fill, anoxic, settle and draw phases occurred in Tank 1. In the aerobic phase, the wastewater was circulated between the two tanks with centrifugal pumps and aeration was mainly achieved through oxygen absorption by micro-organisms in the biofilms when they were exposed to the air. In this paper, the biofilm growth and characteristics in the APSBBR were studied in a 98-day laboratory-scale experiment. During the course of the study, it was found that the biofilm thickness (delta) in Tank 1 ranged from 1.2 to 7.2 mm and that in Tank 2 from 0.5 to 2.2 mm; the biofilm growth against time (t) can be simulated as delta=0.07t0.99 (R2 = 0.97, P = 0.002) in Tank 1 and delta = 0.08t0.66 (R2 = 0.81, P = 0.04) in Tank 2. The biomass yield coefficient, Y, was 0.18 g volatile solids (VS) g(-1) COD removal. The biofilm density in both tanks, X, decreased as the biofilm thickness increased and can be correlated to the biofilm thickness, delta .  相似文献   

4.
Various studies have revealed anaerobic ammonium oxidation (anammox) as a very attractive alternative process suitable for nitrogen removal from wastewater. Here we investigated anammox bacteria in eight different nitrogen removal reactors. The diversity and abundance of anammox bacteria were determined by the 16S rRNA gene analysis, fluorescence in situ hybridization with specific probes and real-time quantitative PCR (qPCR). In these reactors, at least eight unique near full length anammox 16S rRNA gene sequences were detected, which were distributed over two genera; Candidati Brocadia and Kuenenia. FISH results confirmed that only one anammox bacterium dominated the community in each of the eight reactors investigated in this study. qPCR analysis revealed that anammox bacteria were present in seven of the reactors in the order of 109 cells/ml and 107 cells/ml in reactor A1. The dominant and divergent Brocadia-like anammox phylotype in one reactor represented a novel species for which we propose the name Candidatus Brocadia sinica. Taken together, these results indicated that a single seeding source could be used to seed anammox reactors designed to treat different types of wastewater, which could lead to a faster start-up of bioreactors.  相似文献   

5.
Ariesyady HD  Ito T  Okabe S 《Water research》2007,41(7):1554-1568
Functional Bacteria and Archaea community structures of a full-scale anaerobic sludge digester were investigated by using a full-cycle 16S rRNA approach followed by microautoradiography (MAR)-fluorescent in situ hybridization (FISH) technique and micromanipulation. FISH analysis with a comprehensive set of 16S and 23S rRNA-targeted oligonucleotide probes based on 16S rRNA clone libraries revealed that the Gram-positive bacteria represented by probe HGC69A-hybridized Actinobacteria (8.5+/-1.4% of total 4', 6-diamidino-2-phenylindole (DAPI)-stained cells) and probe LGC354-hybridized Firmicutes (3.8+/-0.8%) were the major phylogenetic bacterial phyla, followed by Bacteroidetes (4.0+/-1.2%) and Chloroflexi (3.7+/-0.8%). The probe MX825-hybridized Methanosaeta (7.6+/-0.8%) was the most abundant archaeal group, followed by Methanomicrobiales (2.8+/-0.6%) and Methanobacteriaceae (2.7+/-0.4%). The functional community structures (diversity and relative abundance) of major trophic groups were quantitatively analyzed by MAR-FISH. The results revealed that glucose-degrading microbial community had higher abundance (ca. 10.6+/-4.9% of total DAPI-stained cells) and diversity (at least seven phylogenetic groups) as compared with fatty acid-utilizing microbial communities, which were more specialized to a few phylogenetic groups. Despite the dominance of Betaproteobacteria, members of Chloroflexi, Smithella, Syntrophomonas and Methanosaeta groups dominated the [(14)C]glucose-, [(14)C]propionate-, [(14)C]butyrate- and [(14)C]acetate-utilizing microorganism community, and accounted for 27.7+/-4.3%, 29.6+/-7.0%, 34.5+/-7.6% and 18.2+/-9.5%, respectively. In spite of low abundance (ca. 1%), the hitherto unknown metabolic functions of Spirochaeta and candidate phylum of TM7 as well as Synergistes were found to be glucose and acetate utilization, respectively.  相似文献   

6.
The diversity, population dynamics, and activity profiles of methanogens in anaerobic granular sludges from two anaerobic hybrid reactors treating a molasses wastewater both mesophilically (37 degrees C) and thermophilically (55 degrees C) during a 1081 day trial were determined. The influent to one of the reactors was supplemented with sulphate, after an acclimation period of 112 days, to determine the effect of competition with sulphate-reducing bacteria on the methanogenic community structure. Sludge samples were removed from the reactors at intervals throughout the operational period and examined by amplified ribosomal DNA (rDNA) restriction analysis (ARDRA) and partial sequencing of 16S rRNA genes. In total, 18 operational taxonomic units (OTUs) were identified, 12 of which were sequenced. The methanogenic communities in both reactors changed during the operational period. The seed sludge and the reactor biomass sampled during mesophilic operation, both in the presence and absence of sulphate, was characterised by a predominance of Methanosaeta spp. Following temperature elevation, the dominant methanogenic sequences detected in the non-sulphate supplemented reactor were closely related to Methanocorpusculum parvum. By contrast, the dominant OTUs detected in the sulphate-supplemented reactor upon temperature increase were related to the hydrogen-utilising methanogen, Methanobacterium thermoautotrophicum. The observed methanogenic community structure in the reactors correlated with the operational performance of the reactors during the trial and with physiological measurements of the reactor biomass. Both reactors achieved chemical oxygen demand (COD) removal efficiencies of over 90% during mesophilic operation, with or without sulphate supplementation. During thermophilic operation, the presence of sulphate resulted in decreased reactor performance (effluent acetate concentrations of >3000 mg/l and biogas methane content of <25%). It was demonstrated that methanogenic conversion of acetate at 55 degrees C was extremely sensitive to inhibition by sulphide (50% inhibition at 8-17 mg/l unionised sulphide at pH 7.6-8.0), while the conversion of H(2)/CO(2) methanogenically was favoured. The combination of experiments carried out demonstrated the presence of specific methanogenic populations during periods of successful operational performance.  相似文献   

7.
Anaerobic digestion in the psychrophilic (< 20 degrees C) or sub-mesophilic temperature range has recently been proven as an effective treatment option for the mineralization of a wide variety of problematic wastewaters. In this study, an expanded granular sludge bed-anaerobic filter (EGSB-AF) bioreactor was seeded with a full-scale, mesophilic sludge and employed to evaluate the long-term operational potential, and underlying microbial ecology, of this approach for the treatment of a medium-strength (5 g chemical oxygen demand [COD] l(-1)), synthetic, volatile fatty acid-based wastewater. Throughout the trial period of 625 days, extended intervals of consistently stable and efficient wastewater treatment were sustained. These results were highlighted by a short start-up period (21 d), low hydraulic retention times (4.88h), high organic (up to 24.64kg CODm(-3)d(-1)), and volumetric loading rates (up to 4.92 m3 m(-3) d(-1)). A stable, well-settling granular sludge bed was maintained in the bioreactor for the majority of the trial; however, reduced treatment efficiency and biomass washout were observed at an imposed OLR of 36.96 kg COD m(-3) d(-1). The microbial biomass in the bioreactor was investigated using maximum specific methanogenic activity assays and polymerase chain reaction-denaturing gradient gel electrophoresis. A temporal succession of both the bacterial and archaeal populations was noted during the trial, compared to the seed sludge, in response to bioreactor operation at lower temperatures, loading rate increases and to VFA accumulation in the bioreactor. During the trial, an increased contribution of hydrogenotrophic methanogenesis as a pathway of methane production was observed, along with the overall emergence of a highly active psychrotolerent-though still mesophilic biomass.  相似文献   

8.
BJ Ni  M Ruscalleda  BF Smets 《Water research》2012,46(15):4645-4652
Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm and the affecting factors were evaluated with both experimental and modeling approaches. Fluorescent in situ hybridization (FISH) analysis illustrated that Anammox bacteria and heterotrophs accounted for 77% and 23% of the total bacteria, respectively, even without addition of an external carbon source. Experimental results showed the heterotrophs could grow both on SMP and decay released substrate from the metabolism of the Anammox bacteria. However, heterotrophic growth in Anammox biofilm (23%) was significantly lower than that of nitrifying biofilm (30-50%). The model predictions matched well with the experimental observations of the bacterial distribution, as well as the nitrogenous transformations in batch and continuous experiments. The modeling results showed that low nitrogen surface loading resulted in a lower availability of SMP leading to low heterotrophic growth in Anammox biofilm, but high nitrogen surface loading would lead to relative stable biomass fractions although the absolute heterotrophic growth increased. Meanwhile, increasing biofilm thickness increased heterotrophic growth but has little influence on the relative biomass fractions.  相似文献   

9.
The influence of the hydraulic retention time (HRT) on the start-up phase of a methanogenic inverse turbulent bed bioreactor was investigated. Two identical reactors were monitored, the only differing parameter being the HRT: one of the reactors was fed with a diluted wastewater at a constant HRT of 1 day, the organic loading rate (OLR) being increased by decreasing the substrate dilution; the second reactor was fed at a constant influent concentration of 20 g COD L(-1), the OLR being increased by decreasing the HRT from 40 days to 1 day. After 45 days of start-up, both reactors were operated at an OLR of 20 g COD L(-1)d(-1) and a HRT of 1 day. However, strong differences were observed on biofilm growth. In the reactor operated at a constant short HRT, biofilm concentration was 4.5 as high as in the reactor operated at an increasing HRT. This difference was attributed to the competition between planktonic and biofilm microorganisms in the latter reactor, whereas suspended biomass was quickly washed out in the former reactor because of the low HRT.  相似文献   

10.
Effect of backwashing on perchlorate removal in fixed bed biofilm reactors   总被引:2,自引:0,他引:2  
Choi YC  Li X  Raskin L  Morgenroth E 《Water research》2007,41(9):1949-1959
The influence of backwashing on biological perchlorate reduction was evaluated in two laboratory scale fixed bed biofilm reactors using 1- or 3-mm glass beads as support media. Influent perchlorate concentrations were 50 microg/L and acetate was added as the electron donor at a concentration of 2 mg C/L. Perchlorate removal was evaluated at various influent dissolved oxygen (DO) concentrations. Complete perchlorate removal was achieved with an influent DO concentration of 1mg/L resulting in bulk phase DO concentrations below the detection limit of 0.01 mg/L. The influence of increasing influent DO concentrations for 12 h periods was evaluated before and after individual backwash events. Partial perchlorate removal was achieved with an influent DO concentration of 3.5 mg/L before a strong backwash (bulk phase DO concentrations of approximately 0.2mg/L), while no perchlorate removal was observed after the strong backwash at the same influent DO level (bulk phase DO concentrations of approximately 0.8 mg/L). The immediate effect of backwashing depended on influent DO concentrations. With influent DO concentrations of 1 mg/L, strong backwashing resulted in a brief (<12 h) increase of effluent perchlorate concentrations up to 20 microg/L; more pronounced effects were observed with influent DO concentrations of 3mg/L. Daily weak backwashing had a small and, over time, decreasing negative influence on perchlorate reduction, while daily strong backwashing ultimately resulted in the breakdown of perchlorate removal with influent DO concentrations of 3 mg/L.  相似文献   

11.
On-site post-treatment of anaerobically pre-treated dairy parlour wastewater (DPWWe; 10 degrees C) and mixture of kitchen waste and black water (BWKWe; 20 degrees C) was studied in moving bed biofilm reactors (MBBR). The focus was on removal of nitrogen and of residual chemical oxygen demand (COD). Moreover, the effect of intermittent aeration and continuous vs. sequencing batch operation was studied. All MBBRs removed 50-60% of nitrogen and 40-70% of total COD (CODt). Complete nitrification was achieved, but denitrification was restricted by lack of carbon. Nitrogen removal was achieved in a single reactor by applying intermittent aeration. Continuous and sequencing batch operation provided similar nitrogen and COD removal, wherefore simpler continuous feeding may be preferred for on-site applications. Combination of pre-treating upflow anaerobic sludge blanket (UASB) -septic tank and MBBR removed over 92% of CODt, 99% of biological oxygen demand (BOD7), and 65-70% of nitrogen.  相似文献   

12.
Anaerobic biofilm reactors have to be operated in a way that optimizes on one hand the start-up period by a quick growth of an active biofilm, on the other hand the regular operation by an active control of the biofilm to avoid diffusion limitations and clogging. This article is an overview of the research carried out at INRA-LBE for the last 15 years. The start-up of anaerobic biofilm reactors may be considerably shortened by applying a short inoculation period (i.e. contact between the inoculum and the support media). Then, the increase of the organic loading rate should be operated at a short hydraulic retention time and low hydrodynamic constraints in order to favor biofilm growth. After the start-up period, biofilm growth should be controlled to maintain a high specific activity and prevent clogging. This can be done in particulate biofilm systems by using hydrodynamics to increase or decrease shear forces and attrition but is much more difficult in anaerobic fixed bed reactors.  相似文献   

13.
The effect of wastewater temperature on the rate of nitrification was studied in two pure-oxygen moving-bed biofilm reactors, fed on secondary effluent from a municipal wastewater treatment plant. The first Reactor (R1) was operated under ammonia-limiting conditions, while the second Reactor (R2) was operated under oxygen-limiting conditions. Quite surprisingly, the former showed a negligible influence of thermal changes on nitrification rates, while the latter showed a much higher dependence. In this paper, a temperature coefficient "theta" has been defined as the actual "intrinsic" biological temperature coefficient, similar to the corresponding coefficient that is usually adopted for the design of activated-sludge processes. In addition, an "apparent" coefficient theta(a) has been quantified independently, which was calculated according to the actual values of nitrification rates at different temperatures. The actual biological temperature coefficient "theta", ranged between 1.086 and 1.109 (average value 1.098) under ammonia-limiting conditions, while under oxygen-limiting conditions was in the range 1.023-1.081 (average value 1.058). The apparent value theta(a) was near to unity (i.e. no temperature effect) under ammonia-limiting conditions, while only under oxygen-limiting conditions and at constant dissolved oxygen concentration "theta(a)" coincided with "theta". An explanation was given that, under oxygen-limiting conditions, the specific biomass activity (i.e. the ratio of nitrification rate to biomass concentration) was strongly influenced by the combined effects of oxygen penetration through the biofilm and effluent temperature.  相似文献   

14.
Satoh H  Ono H  Rulin B  Kamo J  Okabe S  Fukushi K 《Water research》2004,38(6):1633-1641
A membrane aerated biofilm reactor (MABR), in which O(2) was supplied from the bottom of the biofilm and NH(4)(+) and organic carbon were supplied from the biofilm surface, was operated at different organic carbon loading rates and intra-membrane air pressures to investigate the occurrence of simultaneous chemical oxygen demand (COD) removal, nitrification and denitrification. The spatial distribution of nitrification and denitrification zones in the biofilms was measured with microelectrodes for O(2), NH(4)(+), NO(2)(-), NO(3)(-) and pH. When the MABR was operated at approximately 1.0 g-COD/m(2)/day of COD loading rate, simultaneous COD removal, nitrification and denitrification could be achieved. The COD loading rates and the intra-membrane air pressures applied in this study had no effect on the start-up and the maximum rates of NH(4)(+) oxidation in the MABRs. Microelectrode measurements showed that O(2) was supplied from the bottom of the MABR biofilm and penetrated the whole biofilm. Because the biofilm thickness increased during the operations, an anoxic layer developed in the upper parts of the mature biofilms while an oxic layer was restricted to the deeper parts of the biofilms. The development of the anoxic zones in the biofilms coincided with increase in the denitrification rates. Nitrification occurred in the zones from membrane surface to a point of ca. 60microm. Denitrification mainly occurred just above the nitrification zones. The COD loading rates and the intra-membrane air pressures applied in this study had no effect on location of the nitrification and denitrification zones.  相似文献   

15.
A two-dimensional, particle-based biofilm model coupled with mass transport and computational fluid dynamics was developed to simulate autotrophic denitrification in a spiral-wound membrane biofilm reactor (MBfR), where hydrogen is supplied via hollow-fiber membrane fabric. The spiral-wound configuration consists of alternating layers of plastic spacer net and membrane fabric that create rows of flow channels, with the top and bottom walls comprised of membranes. The transversal filaments of the spacer partially obstruct the channel flow, producing complex mixing and shear patterns that require multidimensional representation. This study investigated the effect of hydrogen and nitrate concentrations, as well as spacer configuration, on biofilm development and denitrification fluxes. The model results indicate that the cavity spacer filaments, which rest on the bottom membranes, cause uneven biofilm growth. Most biofilm resided on the bottom membranes, only in the wake of the filaments where low shear zones formed. In this way, filament configuration may help achieve a desired biofilm thickness. For the conditions tested in this study, the highest nitrate fluxes were attained by minimizing the filament diameter and maximizing the filament spacing. This lowered the shear stress at the top membranes, allowing for more biofilm growth. For the scenarios studied, biomass limitation at the top membranes hindered performance more significantly than diffusion limitation in the thick biofilms at the bottom membranes. The results also highlighted the importance of two-dimensional modeling to capture uneven biofilm growth on a substratum with geometrical complexity.  相似文献   

16.
Anaerobic digestion, microbial community structure and kinetics were studied in a biphasic continuously fed, upflow anaerobic fixed film reactor treating high strength distillery wastewater. Treatment efficiency of the bioreactor was investigated at different hydraulic retention times (HRT) and organic loading rates (OLR 5-20 kg COD m−3 d−1). Applying the modified Stover-Kincannon model to the reactor, the maximum removal rate constant (Umax) and saturation value constant (KB) were found to be 2 kg m−3 d−1 and 1.69 kg m−3 d−1 respectively. Bacterial community structures of acidogenic and methanogenic reactors were assessed using culture-independent analyses. Sequencing of 16S rRNA genes exhibited a total of 123 distinct operational taxonomic units (OTUs) comprising 49 from acidogenic reactor and 74 (28 of eubacteria and 46 of archaea) from methanogenic reactor. The findings reveal the role of Lactobacillus sp. (Firmicutes) as dominant acid producing organisms in acidogenic reactor and Methanoculleus sp. (Euryarchaeotes) as foremost methanogens in methanogenic reactor.  相似文献   

17.
The main objectives of this study were to evaluate the performance of an anaerobic sequencing batch reactor when subjected to a progressive increase of influent glucose concentration and to estimate the kinetic parameters of glucose degradation. The reactor was initially operated in 8-h cycles, treating glucose in concentrations of 500, 1000 and 2000 mg l(-1). No glucose was detected in the effluent under these three conditions. The reactor showed operating stability when treating a glucose concentration of approximately 500 mg l(-1), with filtered chemical oxygen demand (COD) removal efficiencies varying from 93% to 97%. Operational instability occurred in the operation with glucose concentrations of approximately 1000 and 2000 mg l(-1), caused mainly by a production of extracellular polymeric substances (EPS), which led to hydrodynamic and mass transfer problems in the reactor. The mean volatile acid concentration values in the effluent were approximately 159+/-72 and 374+/-92 mg l(-1), respectively. A first-order model was adjusted to glucose concentration profiles and a modified model, including a residual concentration of substrate, was adjusted to COD temporal profiles. To check the formation of EPS, the reactor was operated in 3-h cycles with concentrations of 500 and 1000 mg l(-1). The purpose of this step was to discover if the production of EPS resulted from the biomass's exposure to a low concentration of substrate over a long period of time. Thus, it was hypothesized that a reduction of the time cycle would also reduce the exposure to low concentrations. However, this hypothesis could not be confirmed because large amounts of EPS were formed already under the first operational condition, using approximately 500 mg l(-1) of glucose in the influent, thus indicating the fallacy of the hypothesis. The production of EPS proved to depend on the organic volumetric load applied to the reactor.  相似文献   

18.
Windey K  De Bo I  Verstraete W 《Water research》2005,39(18):4512-4520
A lab-scale rotating biological contactor (RBC) reactor operated under OLAND conditions was slowly adapted during 178 days to increasing salt concentrations going up to 30 g NaCl L(-1). The reactor performed well during this experimental period. However, the removal capacity of the reactor was lower under high-salinity conditions. A removal efficiency of 84% was achieved at a N loading rate of 725 mg N L(-1) d(-1) and a salt concentration of 30 g L(-1). The effect of salt shock loading and adaptation to 30 g NaCl L(-1) on the specific nitritation and anammox activity of the biomass was investigated in short-term batch experiments. A salt shock loading of 30 g L(-1) caused a 43% decrease in specific nitritation activity and 96% loss of specific anammox activity compared to reference biomass (not exposed to salt). The salt-adapted biomass (3-4 weeks) showed a specific nitritation activity that was 23% lower, and a specific anammox activity that was 58% lower, compared to the reference biomass. Overall, these results demonstrate that the OLAND process can have the potential to treat ammonium-rich brines after adaptation to high salinity.  相似文献   

19.
An expanded-bed granular activated carbon (GAC) anaerobic reactor was developed to treat terephthalate-containing wastewater. Terephthalate inhibits biological anaerobic degradation of terephthalate and methane production when present at a concentration of more than 150 mg/L. In the GAC anaerobic reactor developed here, degradation of terephthalate and other organic compounds occurred smoothly and stably with removal and methane fermentation ratios of more than 90% under a chemical oxygen demand (COD) loading rate of 4 kg COD/(m3 d) and a terephthalate loading rate of 1 kg terephthalate/(m3 d).  相似文献   

20.
Simultaneous nitrification and denitrification in one reactor has been realized with different methods in the past. The usage of biodegradable biocompounds as biofilm carriers is new. The biocompounds were designed out of two polymers having different degradability. Together with suspended autotrophic biomass the biocompound particles were fluidized in an airlift reactor. Process water from sludge dewatering with a mean ammonium nitrogen concentration of 1150 mg L−1 was treated in a two stage system which achieved a nitrogen removal of 75%. Batch experiments clearly indicate that nitrification can be localized in the suspended biomass and denitrification in the pore structure of the slowly degraded biocompounds. Images taken with CLSM prove the concept of the pore structure within the biocompounds, which provide both a heterotrophic biofilm and carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号