首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pregnant Wistar rats were exposed to a single 1.0 Gy dose of gamma rays on gestational days 13, 15, 17 or 19 (E13s, E15s, E17s and E19s, respectively). A mechanical injury was made in the cerebral hemisphere of their 6 day-old male offsprings. The injured rats were injected with [3H] thymidine on day 1 or 2 after injury and killed 4 h after the injection. Brain sections were processed for BSI-B4 isolectin histochemistry, subjected to autoradiography and examined microscopically to record numbers of proliferating and unproliferating macrophages located within the region of injury. The total number of macrophages as well as number of their divisions were minimal in E13s then showed a regular increase in E15s and E17s, and reached its maximal level in brains irradiated on E19. The trend of changes was opposite to that showed by changes in the intensity of astrocyte proliferation [Z. Setkowicz, K. Janeczko, Effects of prenatal gamma-irradiation on the astrocyte proliferation in response to injury in the brain of 6-day-old rat, Brain Res. 803 (1998) 122-128.]. The recruitment and proliferation of macrophages and the astrocyte proliferation were regarded as reactive processes occurring under control of different regulatory mechanisms acting within the region of injury.  相似文献   

2.
Mechanisms inducing gliosis following injury in the central nervous sy stem are poorly understood. We evaluated the effect of axonal injury on astrocyte and Schwann cell proliferation and morphology in vitro. Purified rat dorsal root ganglion neurons grown on monolayers of rat neonatal cortical astrocytes (N-ASneonatal cultures) or sciatic nerve-derived Schwann cells (N-SC cultures) were mechanically injured. Non-injured cultures served as controls. Cell proliferation near lesions was monitored by autoradiography 1,2,4, and 8 days postinjury. Axonal injury caused a significant transient increase in astrocyte proliferation immediately proximal and distal to the lesion. The lesion did not induce marked changes in the intensity of glial fibrillary acidic protein (GFAP) immunoreactivity. However, processes from GFAP-positive cells usually arranged in random fashion in noninjured cultures were aligned perpendicularly to the cut distal to lesions. Ultrastructural analysis in lesioned N-ASneonatal cultures indicated that proximal to the lesion filament-filled astrocytes were intermingled with axons. Distal to the lesion astrocyte processes formed layers, between which an increased amount of collagen-like material appeared with time postlesion. Axons distal to the lesion degenerated by 2 days, coinciding with the early disappearance of neurofilament immunoreactivity. In noninjured and proximally in injured N-SC cultures, Schwann cells extended processes, engulfing some axons. Distal to the lesion, Schwann cells appeared more rounded and neurites remained until 4 days postinjury. Media conditioned by injured or non-injured N-ASneonatal cultures did not affect neuron-induced Schwann cell proliferation. These findings demonstrate that axonal injury and degeneration cause a transient increase in astrocyte proliferation and induce morphological changes in astrocytes consistent with the onset of gliosis.  相似文献   

3.
Pregnant Wistar rats were exposed to a single 1.0 Gy dose of gamma rays on gestational days 13, 15, 17 or 19 (E13, E15, E17 and E19, respectively). A mechanical injury was made in the cerebral hemisphere of their 6 day-old male offsprings. The injured rats were injected with [3H]thymidine on day 1 or 2 after injury and killed 4 h after the injection. Brain sections were immunostained for glial fibrillary acidic protein (GFAP) or S-100beta protein, subjected to autoradiography and examined microscopically to record proliferating astrocytes. The intensity of astrocyte proliferation in response to injury showed a gradual decrease from the level maximal in brains irradiated on E13 to minimal in those irradiated on E19. The changes were regarded as being related to the stage of prenatal development when irradiation of the brain was performed.  相似文献   

4.
Pregnant Wistar rats were exposed to a single 1.0 Gy dose of gamma-irradiation on gestational day 13, 15, 17 or 19. Thirty-day-old male offspring received a mechanical lesion in the left cerebral hemisphere. One, 2 or 4 days after the injury the rats were injected with [3H]thymidine and sacrificed 4 h after the injection. Thereafter, brain sections were immunostained for GFAP or S100 beta protein, subjected to autoradiography and examined microscopically to record immunopositive astrocytes labelled with [3H]thymidine. Statistically significant elevation of the reactive astrocyte proliferation was revealed on the 2nd day following injury in brains irradiated on gestational day 15. The results represent the first in vivo evidence that a low-dose prenatal gamma-irradiation can induce a long-term increase in the ability of astroglia to proliferate in response to injury.  相似文献   

5.
We have reported previously that oxysterols inhibit astrogliosis and intracranial glioblastoma growth. To elucidate the mechanism of action of these molecules in vivo, we have investigated their effect on the cholesterol biosynthesis in the injured brain. In a bilateral lesion model, injection of liposomes containing 7 beta-hydroxy-cholesterol decreased [3H]acetate incorporation into neutral lipids and cholesterol by 30% and 40%, respectively. Structural analogues were tested using a unilateral lesion model. The injury did not significantly affect cholesterogenesis; injection of 7 beta-hydroxycholesterol or 7 beta-hydroxycholesteryl-3-oleate reduced acetate incorporation into cholesterol by 47% and 43%, respectively. Both 7-ketocholesteryl-3-oleate and 7 alpha-hydroxycholesteryl-3-oleate inhibited cholesterogenesis by 32%. As cholesterol and by-products of the cholesterol pathway play a key role in cell division, we have assessed the effect of oxysterols on reactive astrocyte proliferation. The incorporation of bromodeoxyuridine showed that up to 46% of astrocytes were proliferating 24 h after the injury. Injection of 12 nmol of 7 beta-hydroxycholesterol or 7 beta-hydroxycholesteryl-3-oleate reduced the labelling index to 26%, whereas the labelling index in the 7-keto-cholesteryl-3-oleate-treated cortex was 37%. These findings demonstrate that oxysterols are potent inhibitors of the endogenous cholesterol biosynthesis in brain and show a correlation between cholesterogenesis and reactive astrocyte proliferation.  相似文献   

6.
Female Wistar rats were exposed to a single 1.0 Gy dose of gamma radiation on gestational days 13, 15, 17 or 19 (E13, E15, E17 and E19, respectively). Their 8- and 16-day old male offsprings were injected with 3H-thymidine and sacrificed 4 h after the injection. Brain sections were immunostained for S100beta protein and subjected to autoradiography. Thereafter, the dorsal part of the hippocampal formation was examined microscopically and numbers and locations of proliferating astrocytes were recorded. Following prenatal irradiation, the intensity of astrocyte proliferation was considerably reduced, especially in the region of dentate gyrus. The reduction showed regular trend of changes being much stronger in brains irradiated on E19 than in those irradiated on E13. The changes, therefore, were related to the stage of brain development at which the irradiation was performed. A possible role of neuronal regulatory influence on the postnatal development of glial cells was discussed.  相似文献   

7.
OBJECTIVE: Thermal injury is associated with the development of encephalopathy. The mechanism(s) for the development of this condition have not been established. In the present study, the effects of thermal injury were determined on rat brain glucose utilization (Rg), using 2-[18F]fluoro-2-deoxy-D-glucose (18FDG). DESIGN: Four types of studies were performed. In one group of rats, the effect of thermal injury on total rat brain glucose utilization (Rg) was determined at 6 hours, 24 hours, and 3 weeks after injury. The brains of thermally injured rats were also assayed for hexokinase and glucose-6-phosphatase activities, since these enzyme activities are responsible for the phosphorylation and dephosphorylation of the 18FDG. We also measured total body oxygen consumption in the thermally injured rats. We wanted to compare the changes produced by thermal injury on rat brain glucose utilization (Rg) with the effects produced by compounds known to modify energy metabolism and/or rat brain glucose utilization (Rg). For that reason, in a second group of rats, an inflammatory state was produced by lipopolysaccharide injection, and rat brain glucose utilization (Rg) was determined. In the third group of rats, overall metabolism in rats was reduced by pentobarbital injection, followed by hypothermia, and rat brain glucose utilization (Rg) was determined. In the fourth group of rats, overall metabolism in rats was stimulated by 2,4-dinitrophenol injection, and rat brain glucose utilization (Rg) was determined. MATERIALS AND METHODS: Glucose utilization (Rg) by the brains of these treated rats was determined using 18FDG. Oxygen consumption in vivo, as well as glucose-6-phosphatase and hexokinase activity in vitro, were measured by standard procedures. MEASUREMENTS AND MAIN RESULTS: Glucose utilization (Rg) by rat brain was significantly reduced (p < 0.01) at 6 and 24 hours after injury, but returned to normal values 3 weeks after injury. These reductions were associated with decreases in rat brain hexokinase activity, increases in rat brain glucose-6-phosphatase activity, and decreased oxygen consumption by rats in vivo. Pentobarbital injection followed by hypothermia reduced rat brain glucose utilization (Rg) (p < 0.01), while 2,4-dinitrophenol treatment elevated rat brain glucose utilization (Rg) (p < 0.01). In contrast, LPS treatment had no effect on rat brain glucose utilization (Rg). CONCLUSIONS: These data indicate that thermal injury decreases glucose utilization (Rg) in rat brain during the hypometabolic phase. This effect can be explained, at least in part, by alterations in hexokinase and glucose-6-phosphatase activities, as well as reductions in oxygen consumption. Thus, the changes in brain glucose utilization (Rg) appear to be associated with the ebb phase of the thermal injury. The present results observed in burned rats may provide evidence to explain the encephalopathy observed in burned patients.  相似文献   

8.
Vascular smooth muscle cell (SMC) proliferation is an important component in the development of restenosis. Because endothelin (ET) has been reported to act as an SMC mitogen, we postulated that the orally active ETA receptor antagonist BMS-182874 would suppress the development of the intimal lesion that develops in rat carotid arteries after balloon injury. Using cultured rat aortic SMC, we noted that ET-1-stimulated increases in [3H]thymidine incorporation were blocked by BMS-182874. To determine the effect of the drug on intimal lesion formation, we treated rats with BMS-182874 (100 mg/kg orally, p.o.) or vehicle once daily for 3 weeks, beginning 1 week before balloon injury. Two weeks after injury, drug-treated rats had a 35% decrease in lesion area and a 34% decrease in the lesion/media ratio as compared with the vehicle-treated rats. In situ hybridization (ISH) analysis of balloon-injured rat carotid arteries showed an increase in ETA receptor mRNA. These data support the concept that ETA receptor activation contributes to intimal lesion formation by promotion of SMC proliferation and suggest a potential use for ETA receptor antagonists in the amelioration of hyperproliferative vascular diseases, including restenosis.  相似文献   

9.
Exposure of the adult rat brain parenchyma to zinc induces an increase in the intracerebral expression of the metal-binding protein, metallothionein, which is normally confined to astrocytes, ependymal cells, choroid plexus epithelial cells, and brain endothelial cells. Metallothionein is expressed only in diminutive amounts in astrocytes of the neonatal rat brain, which could imply that neonatal rats are devoid of the capacity to detoxify free metals released from a brain wound. In order to examine the influence of a brain injury on the expression of metallothionein in the neonatal brain, PO rats were subjected to a localized freeze lesion of the neocortex of the right temporal cortex. This lesion results in a disrupted blood-brain interface, leading to extravasation of plasma proteins. From 16 h, reactive astrocytosis, defined as an increase in the number and size of cells expressing GFAP and vimentin, was observed surrounding the neocortical lesion site. Astrocytes and pial cells situated adjacent to the area of injury also became positively stained for metallothionein. At 3-6 days post-lesion, the highest level of reactive astrocytes expressing metallothionein was observed. Neo-Timm staining revealed that histochemically reactive zinc had disappeared from the lesion site. Extracellular albumin and metallothionein-positive astrocytes were absent approximately 2 weeks after the lesion, whereas reactive astrocytosis was still observed. These results show that a lesion of the neonatal rat brain induces a transient expression of metallothionein in reactive astrocytes, probably as a response to metals released from the site of the brain injury.  相似文献   

10.
In this study, morphologic changes in brain lesions initiated by moderate lateral fluid percussion injury in rats were investigated chronologically using high-resolution magnetic resonance imaging (MRI) and histopathologic methods. Rats were subjected to moderate fluid percussion injury (average 2.80 +/- 0.48 atmospheres) over the exposed dura overlying the right parietal cortex. MRI obtained in vivo were compared with corresponding pathologic findings at 1, 6, and 24 h and at 3, 6, 14 and 80 days after injury. T2-weighted images showed scattered low-signal intensity in the injured cortex within a few hours after injury, whereas histologic findings revealed intraparenchymal hemorrhages. T2-weighted images of the ipsilateral cerebral cortex and/or corpus callosum showed a high-signal-intensity area 4 h after injury. The high-signal-intensity area became largest in size between 6 and 24 h, then declined gradually, and almost disappeared 14 days after injury. Histologic examination revealed pyknosis, retraction of the cell body of neurons with vacuolated neuropil in the corresponding regions 6 and 24 h after injury, and cystic necrosis 14 days after injury. The location and extent of these pathologic changes were depicted accurately by MRI in vivo. In the hippocampus, pyknosis and retraction of the cell body of pyramidal neurons were observed on the injured side 24 h after injury, and the number of neurons in the CA1 and CA2-CA3 regions decreased significantly on the same side by 14 days after injury. It is concluded that morphologic changes in the brain following experimental traumatic brain injury in rats are detectable in vivo by high-resolution MRI, and that MRI may be useful for the evaluation of treatment effects in experimental brain injury.  相似文献   

11.
The temporal pattern of apoptosis in the adult rat brain after lateral fluid-percussion (FP) brain injury was characterized using terminal deoxynucleotidyl-transferase-mediated biotin-dUTP nick end labeling (TUNEL) histochemistry and agarose gel electrophoresis. Male Sprague Dawley rats were subjected to brain injury and killed for histological analysis at intervals from 12 hr to 2 months after injury (n = 3/time point). Sham (uninjured) controls were subjected to anesthesia with (n = 3) or without (n = 3) surgery. Apoptotic TUNEL-positive cells were defined using stringent morphological criteria including nuclear shrinkage and fragmentation and condensation of chromatin and cytoplasm. Double-labeled immunocytochemistry was performed to identify TUNEL-positive neurons (anti-neurofilament monoclonal antibody RM044), astrocytes (anti-glial fibrillary acidic protein polyclonal antibody), and oligodendrocytes (anti-cyclic nucleotide phosphohydrolase polyclonal antibody). Compared with that seen with sham controls, in the injured cortex, significant apoptosis occurred at 24 hr (65 +/- 19 cells; p < 0.05) with a second, more pronounced response at 1 week after injury (91 +/- 24 cells; p < 0.05). The number of apoptotic cells in the white matter was increased as early as 12 hr after injury and peaked by 1 week (33 +/- 6 cells; p < 0.05). An increase in apoptotic cells was observed in the hippocampus at 48 hr (13 +/- 8), whereas in the thalamus, the apoptotic response was delayed, peaking at 2 weeks after injury (151 +/- 71 cells; p < 0.05). By 2 months, the number of apoptotic cells in most regions had returned to uninjured levels. At 24 hr after injury, TUNEL-labeled neurons and oligodendrocytes were localized primarily to injured cortex. By 1 week after injury, populations of TUNEL-labeled astrocytes and oligodendrocytes were present in the injured cortex, while double-labeled neurons were present predominantly in injured cortex and thalamus, with a few scattered in the hippocampus. DNA agarose gels confirmed morphological identification of apoptosis. These data suggest that the apoptotic response to trauma is regionally distinct and may be involved in both acute and delayed patterns of cell death.  相似文献   

12.
The injured adult mammalian spinal cord shows little spontaneous recovery after injury. In the present study, the contribution of projections in the dorsal half of the spinal cord to functional loss after adult spinal cord injury was examined, together with the effects of transgenic cellular delivery of neurotrophin-3 (NT-3) on morphological and functional disturbances. Adult rats underwent bilateral dorsal column spinal cord lesions that remove the dorsal corticospinal projections or underwent more extensive resections of the entire dorsal spinal cord bilaterally that remove corticospinal, rubrospinal, and cerulospinal projections. Long-lasting functional deficits were observed on a motor grid task requiring detailed integration of sensorimotor skills, but only in animals with dorsal hemisection lesions as opposed to dorsal column lesions. Syngenic primary rat fibroblasts genetically modified to produce NT-3 were then grafted to acute spinal cord dorsal hemisection lesion cavities. Up to 3 months later, significant partial functional recovery occurred in NT-3-grafted animals together with a significant increase in corticospinal axon growth at and distal to the injury site. These findings indicate that (1) several spinal pathways contribute to loss of motor function after spinal cord injury, (2) NT-3 is a neurotrophic factor for the injured corticospinal projection, and (3) functional deficits are partially ameliorated by local cellular delivery of NT-3. Lesions of the corticospinal projection may be necessary, but insufficient in isolation, to cause sensorimotor dysfunction after spinal cord injury in the rat.  相似文献   

13.
In earlier studies, the neural cell adhesion molecule, N-CAM, was found to inhibit the proliferation of rat astrocytes both in vitro and in vivo. To identify the gene targets involved, we used subtractive hybridization to examine changes in gene expression that occur after astrocytes are exposed to N-CAM in vitro. While the mRNA levels for N-CAM decreased after such treatment, the levels of mRNAs for glutamine synthetase and calreticulin increased. Since glutamine synthetase and calreticulin are known to be involved in glucocorticoid receptor pathways, we tested a number of steroids for their effects on astrocyte proliferation. Dexamethasone, corticosterone, and aldosterone were all found to inhibit rat cortical astrocyte proliferation in culture in a dose-dependent manner. RU-486, a potent glucocorticoid antagonist, reversed the inhibitory effects of dexamethasone. These observations prompted the hypothesis that the inhibition of proliferation by N-CAM might be mediated through the glucocorticoid receptor pathway. Consistent with this hypothesis, the inhibition of astrocyte proliferation by N-CAM was reversed in part by a number of glucocorticoid antagonists, including RU-486, dehydroepiandrosterone, and progesterone. In transfection experiments with cultured astrocytes, N-CAM treatment increased the expression of a luciferase reporter gene under the control of a minimal promoter linked to a glucocorticoid response element. The enhanced activity of this construct stimulated by N-CAM was abolished in the presence of RU-486. The combined data suggest that astrocyte proliferation is in part regulated by alterations in glucocorticoid receptor pathways.  相似文献   

14.
We examined the temporal profile of apoptosis after fluid percussion-induced traumatic brain injury (TBI) in rats and investigated the potential pathophysiological role of caspase-3-like proteases in this process. DNA fragmentation was observed in samples from injured cortex and hippocampus, but not from contralateral tissue, beginning 4 hr after TBI and continuing for at least 3 d. Double labeling of brain with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and an antibody directed to neuronal nuclear protein identified apoptotic neurons with high frequency in both traumatized rat cortex and hippocampus. Cytosolic extracts from injured cortex and hippocampus, but not from contralateral or control tissue, induced internucleosomal DNA fragmentation in isolated nuclei with temporal profiles consistent with those of DNA fragmentation observed in vivo. Caspase-3 mRNA levels, estimated by semiquantitative RT-PCR, were elevated fivefold in ipsilateral cortex and twofold in hippocampus by 24 hr after TBI. Caspase-1 mRNA content also was increased after trauma, but to a lesser extent in cortex. Increased caspase-3-like, but not caspase-1-like, enzymatic activity was found in cytosolic extracts from injured cortex. Intracerebroventricular administration of z-DEVD-fmk-a specific tetrapeptide inhibitor of caspase-3-before and after injury markedly reduced post-traumatic apoptosis, as demonstrated by DNA electrophoresis and TUNEL staining, and significantly improved neurological recovery. Together, these results implicate caspase-3-like proteases in neuronal apoptosis induced by TBI and suggest that the blockade of such caspases can reduce post-traumatic apoptosis and associated neurological dysfunction.  相似文献   

15.
Microglial proliferation and activation are common events in the injured CNS. The mechanisms, however, by which activated microglia are eliminated following a pathological stimulus are still poorly understood. The present study has therefore examined microglial proliferation by 3H-thymidine autoradiography and programmed cell death by terminal transferase-mediated nick end labeling (TUNEL) and in situ end labeling (ISEL) of nuclear DNA fragments in two models of peripheral nerve injury, i.e. sciatic and hypoglossal nerve transection in the rat. In these models, microglial activation and proliferation occur in CNS projection areas, i.e. in the ventral and dorsal gray matter of lumbar spinal cord and in the nucleus gracilis after sciatic nerve transection as well as in the axotomized hypoglossal nucleus. At these sites, microglial proliferation had a relatively sharp peak between days 2 and 3 post-lesion and then rapidly declined. DNA fragmentation was detected in lectin (GSI-B4)-positive microglia from day 6 after axotomy onward, reached an apparent peak at day 21 and was downregulated by day 60, i.e. the latest time point investigated. However, the expression of bcl-2 and c-myc, i.e. genes potentially controlling programmed cell death, was found to be unchanged during this period. Programmed cell death thus appears to be one mechanism by which activated microglia are gradually eliminated following CNS injury and steady state of microglial cell numbers is achieved in vivo. Expression of microglial growth factors may be instrumental in controlling these processes.  相似文献   

16.
The capacity of a calpain inhibitor to reduce losses of neurofilament 200-, neurofilament 68- and calpain 1-mediated spectrin breakdown products was examined following traumatic brain injury in the rat. Twenty-four hours after unilateral cortical impact injury, western blot analyses detected neurofilament 200 losses of 65% (ipsilateral) and 36% (contralateral) of levels observed in naive, uninjured rat cortices. Neurofilament 68 protein levels decreased only in the ipsilateral cortex by 35% relative to naive protein levels. Calpain inhibitor 2, administered 10 min after injury via continuous arterial infusion into the right external carotid artery for 24 h, significantly reduced neurofilament 200 losses to 17% and 3% relative to naive neurofilament 200 protein levels in the ipsilateral and contralateral cortices, respectively. Calpain inhibitor administration abolished neurofilament 68 loss in the ipsilateral cortex and was accompanied by a reduction of putative calpain-mediated neurofilament 68 breakdown products. Spectrin breakdown products mediated by calpain 1 activation were detectable in both hemispheres 24 h after traumatic brain injury and were substantially reduced in animals treated with calpain inhibitor 2 both ipsilaterally and contralaterally to the site of injury. Qualitative immunofluorescence studies of neurofilament 200 and neurofilament 68 confirmed western blot data, demonstrating morphological protection of neuronal structure throughout cortical regions of the traumatically injured brain. Morphological protection included preservation of dendritic structure and reduction of axonal retraction balls. In addition, histopathological studies employing hematoxylin and eosin staining indicated reduced extent of contusion at the injury site. These data indicate that calpain inhibitors could represent a viable strategy for preserving the cytoskeletal structure of injured neurons after experimental traumatic brain injury in vivo.  相似文献   

17.
Middle cerebral artery occlusion (MCAo) leads to brain cell death. However, quantitation of injured brain cells and inflammatory cells after MCAo has not been determined in the rat. Transient (2 h) MCAo was therefore induced in male Wistar rats by means of an intraluminal monofilament. Immunohistochemical and histochemical procedures performed at 46 h after MCAo were used to identify specific cellular populations in ischemic and control rats (n = 11). In the ischemic core of the lesion, approximately 24.7% of cells disappeared. Forty-four point eight percent of parenchymal cells consisted of intact (13.0%) or reversibly injured swollen (7.6%) and scalloped/shrunken dark (24.2%) cells. The percentage of irreversibly damaged cells was 55.2%, and included 49.9% necrotic cells (10.5% red and 39.4% ghost) and 5.4% apoptotic cells. In the inner boundary zone of the lesion, 15.9% of cells disappeared. Viable cells constituted 62.0% of all remaining cells. Neutrophils and macrophages were localized to this area. In the outer boundary zone of the lesion, 9.0% of cells disappeared. Viable cells constituted 91.6% of all remaining cells. The ratio of apoptotic to necrotic cells was 1:9, 1:6, 1:13 in the ischemic core, inner and outer boundary zones, respectively. Our data suggest the presence of three zones within the ischemic lesion: the core, and inner and outer boundaries. At 46 h after 2 h of MCAo the ischemic lesion is highly heterogeneous containing relatively large percentages of morphologically intact cells, suggesting the possibility of an extended window of therapeutic opportunity.  相似文献   

18.
The response to intracerebroventricular administration of interferon (IFN)-gamma was examined in the adult Wistar rat brain: major histocompatibility complex (MHC) antigens class I and II, CD8 and CD4 antigens, and the macrophage/microglia antigen OX42 were analyzed in respect to saline-injected cases over 1 week. The glial cell type expressing MHC antigens was characterized with double labeling. IFN-gamma was thus found to induce MHC class I and II expression in microglia, identified by tomato lectin histochemistry, and not in GFAP-immunostained astrocytes. MHC antigen-expressing microglia was detected in the periventricular parenchyma, several fields of the cerebral cortex, cerebellum, major fiber tracts, and brainstem superficial parenchyma. Different gradients of density and staining intensity of the MHC-immunopositive elements were observed in these regions, in which MHC class I antigens persisted up to 1 week, when MHC class II induction had declined. Quantitative analysis pointed out the proliferation of OX42-immunoreactive cells in periventricular and basal brain regions. CD8+ T cells were observed in periventricular regions, basal forebrain, and fiber tracts 3 days after IFN-gamma injection and their density markedly increased by 7 days. CD4+ T cells were also seen and they were fewer than CD8+ ones. However, numerous CD4+ microglial cells were observed in periventricular and subpial regions, especially 1 week after IFN-gamma injection. Our data indicate that this proinflammatory cytokine mediates in vivo microglia activation and T cell infiltration in the brain and that the cells involved in this immune response display a regional selectivity and a different temporal regulation of antigen expression.  相似文献   

19.
The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号