共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Industrial and Engineering Chemistry》2014,20(1):322-330
Hydrate based gas separation is a promising method for carbon dioxide capture. The purpose of this study is to analyze hydrates formation and dissociation characters when gas mixture flows through cooled silica gel. The additives mixture (THF/SDS) was used to saturate the silica gel partly, and gas mixture (CO2/H2) was injected into it to form hydrates. Magnetic resonance imaging (MRI) images were obtained using fast spin echo multi-slice pulse sequence. Hydrates saturations were calculated quantitatively using MRI data. The experimental results showed that the optimal initial solution saturation was 34.2% in this investigation. The gas component was analyzed to assess the separation efficiency. For hydrates dissociation processes at 1 atmospheric pressure, CO2 concentrations increased obviously. Half of the six cycles showed that more than 85.00 mol% CO2 contained in the capture gas, and the lowest CO2 concentration was 64.83 mol%. Hydrate blockages appeared frequently, which restricted the contact of gas and solution and caused the incomplete transformations of residual solution to hydrates. It was a key restricted factor for hydrate based CO2 capture. 相似文献
2.
Sheshan Bhimrao Meshram Omkar S Kushwaha Palle Ravinder Reddy Gaurav Bhattacharjee Rajnish Kumar 《中国化学工程学报》2019,27(9):2148-2156
Gas hydrate reserves are potential source of clean energy having low molecular weight hydrocarbons trapped in water cages. In this work, we report how organic compounds of different chain lengths and hydrophilicities when used in small concentration may modify hydrate growth and either act as hydrate inhibitors or promoters. Hydrate promoters foster the hydrate growth kinetics and are used in novel applications such as methane storage as solidified natural gas, desalination of sea water and gas separation. On the other hand, gas hydrate inhibitors are used in oil and gas pipelines to alter the rate at which gas hydrate nucleates and grows. Inhibitors such as methanol and ethanol which form strong hydrogen bond with water have been traditionally used as hydrate inhibitors. However, due to relatively high volatility a significant portion of these inhibitors ends up in gas stream and brings further complexity to the safe transportation of natural gas. In this study, organic additives such as oxalic acid, succinic acid and L-aspartic acid (all three) having—COOH group(s) with aspartic acid having an additional—NH2 group, are investigated for gas hydrate promotion/inhibition behavior. These compounds are polar in nature and thus have significant solubility in liquid water; the presence of weak acidic and water loving (carboxylic/amine groups) moieties makes these organic acids an excellent candidate for further study. This study would pave ways to identify a novel(read better) promoter/inhibitor for gas hydrate formation. Suitable thermodynamic conditions were generated in a stirred tank reactor coupled with cooling system; comparison of gas hydrate formation kinetics with and without additives were carried out to identify the effect of these acids on the formation and growth of hydrates. The possible mechanisms by which these additives inhibit or promote the hydrate growth are also discussed. 相似文献
3.
China has entered the area of new normal economy which requires the harmonious development of energy consumption, environmental protection and economic development. Natural gas hydrate is a potential clean energy with tremendous reserve in China. The successful field test of marine hydrate exploitation in South China Sea created a new record of the longest continuous gas production from natural gas hydrate. However, the corresponding fundamental research is still urgently needed in order to narrow the gap between field test and commercial production. This paper reviewed the latest advances of experimental study on gas production from hydrate reservoir in China. The experimental apparatus for investigating the performance of hydrate dissociation in China has developed from one dimensional to two dimensional and three dimensional. In addition, well configuration developed from one tube to complicated multi-well networks to satisfy the demand of different production models. Besides, diverse testing methods have been established. The reviewed papers preliminary discussed the mechanical properties and the sediment deformation situation during the process of hydrate dissociation. However, most reported articles only consider the physical factor, the coupled mechanism of physical and chemical factor for the mechanical properties of the sediment and the sand production problem should be studied further. 相似文献
4.
This study presents the development of a four-phase, four-fluid flow pipeline simulator to describe simultaneous flow of gas, oil, water, and hydrate through a pipeline. The model has been equipped with a phase behavior model and hydrate equilibrium model to efficiently estimate thermodynamic and hydrodynamic properties of multicomponent mixtures. The governing equations are formulated for describing the physical phenomena of mass, momentum, and heat transfers between the fluids, and the wall. The equations are solved by utilizing the implicit finite-difference method on the staggered-grid system which can properly describe the boundary conditions as well as phase appearance or disappearance. The developed pipeline simulator has been validated against the field data presented by a previous investigator, and their matches are found to be relatively excellent. The model also has been applied to a multi-component, four-phase flow system in order to examine the transient flow characteristics in pipeline. Also, the potential and the location of hydrate formed in the pipeline have been studied by analyzing the flow characteristics. As a result, it was found that a pipeline system flowing gas, oil, water, and hydrate could be optimized by systematically investigating the hydrodynamic variables for the prevention of hydrate formation. 相似文献
5.
During the development and application of natural gas, hydrate plugging the pipelines is a very important issue to solve. Currently, adding thermodynamic hydrate inhibitors (THIs) and kinetic hydrate inhibitors (KHIs) in gas-dominated pipelines is a main way to prevent hydrate plugging of flow lines. This paper mainly reviews the efforts to develop THIs and KHIs in the past 20 years, compare the role of various THIs, such as methanol, ethylene glycol and electrolyte, and give the tips in using. The direction of KHIs is toward high efficiency, low toxicity, low pollution and low cost. More than a hundred inhibitors, including polymers, natural products and ionic liquids, have been synthesized in the past decade. Some of them have better performance than the current commercial KHIs. However, there are still few problems, such as the complex synthesis process, high cost and low solubility, impeding the commercialization of these inhibitors. The review also summarized some application of KHIs in China. Research of KHIs in China began late. There are no KHIs used in gas pipelines. Only a few field tests have been carried out. In the end of this paper, the field test of self-developed KHIs by China is summarized, and the guidance is given according to the application results. 相似文献
6.
Mohammad Ghavipour Mina Ghavipour Minoo Chitsazan Seyed Hessam Najibi Saeed Shiry Ghidary 《Chemical Engineering Research and Design》2013
A novel high-pressure apparatus with various abilities in hydrate investigation fields has been designed, constructed and fully described in the present paper. In order to achieve an appropriate understanding of the gas hydrate behavior in formation and destabilization, series of laboratory experiments with six different gas mixtures were done and more than 130 hydrate equilibrium points in the pressure range of about 450–3000 psia were recorded. Different methods of hydrate formation prediction were discussed and finally the new promising neural networks method was used. Because of the previous works defects in accurate hydrate formation prediction via neural networks, a new use of neural networks was introduced. Testing and validation of the new neural networks method indicates that it is a reliable technique for the accurate prediction of hydrate formation conditions for generalized gas systems and can be used in future automatic inhibitor dosing devices. 相似文献
7.
Yanping Duan Pengfei Wang Wenge Yang Xia Zhao Hong Hao Ruijie Wu Jie Huang 《中国化学工程学报》2021,40(12):237-244
Natural gas hydrate inhibitor has been serving the oil and gas industry for many years. The development and search for new inhibitors remain the focus of research. In this study, the solution polymerization method was employed to prepare poly(N-vinyl caprolactam-co-butyl methacrylate) (P(VCap-BMA)), as a new kinetic hydrate inhibitor (KHI). The inhibition properties of P(VCap-BMA) were investigated by tetrahydrofuran (THF) hydrate testing and natural gas hydrate forming and compared with the commercial KHIs. The experiment showed that PVCap performed better than copolymer P(VCap-BMA). However, low doses of methanol or ethylene glycol are compounded with KHIs. The compounding inhibitors show a synergistic inhibitory effect. More interesting is the P(VCap-BMA)-methanol system has a better inhibitory effect than the PVCap-methanol system. 1% P(VCap-BMA) + 5% methanol presented the best inhibiting performance at subcooling 10.3 ℃, the induction time of natural gas hydrate was 445 min. Finally, the interaction between water and several dimeric inhibitors compared by natural bond orbital (NBO) analyses and density functional theory (DFT) indicated that inhibitor molecules were able to form the hydrogen bond with the water molecules, which result in gas hydrate inhibition. These exciting properties make the P(VCap-BMA) compound hydrate inhibitor promising candidates for numerous applications in the petrochemical industry. 相似文献
8.
Hydrates always are considered as a threat to petroleum industry due to the operational problems it can cause.These problems could result in reducing production performance or even production stoppage for a long time.In this paper,we were intended to develop a LSSVM algorithm for prognosticating hydrate formation temperature (HFT) in a wide range of natural gas mixtures.A total number of 279 experimental data points were extracted from open literature to develop the LSSVM.The input parameters were chosen based on the hydrate structure that each gas species form.The modeling resulted in a robust algorithm with the squared correlation coefficients (R2) of 0.9918.Aside from the excellent statistical parameters of the model,comparing proposed LSSVM with some of conventional correlations showed its supremacy,particularly in the case of sour gases with high H2S concentrations,where the model surpasses all correlations and existing thermodynamic models.For detection of the probable doubtful experimental data,and applicability of the model,the Leverage statistical approach was performed on the data sets.This algorithm showed that the proposed LSSVM model is statistically valid for HFT prediction and almost all the data points are in the applicability domain of the model. 相似文献
9.
Gang Yue Aixian Liu Qiang Sun Xingxun Li Wenjie Lan Lanying Yang Xuqiang Guo 《中国化学工程学报》2018,26(12):2495-2502
[C8min] BF4 was used in this work to combine with TBAB or THF for the investigation about thermodynamic and kinetic additives on CO2 and CH4/CO2 hydrates. The results show that[C8min] BF4 has the inhibition effect on the equilibrium of hydrate formation. About the kinetic study,[C8min] BF4 could improve the rate of CO2 hydrate formation and increase the gas uptake in hydrate phase. At the same time, the combination of TBAB and[C8min] BF4 could increase the mole friction of CH4 in residual gas comparing with the data in THF solution. CH4 separation efficiency was strongly enhanced. Since that the size of CO2 and CH4 molecules are similar, CH4 and CO2 could form the similar hydrate, so the recovery of CH4 from biogas decreases lightly. The CH4 content in biogas can purified from 67 mol% to 77 mol% after one-stage hydrate formation. In addition, the combination of THF and[C8min] BF4 do not have obvious promoting effect on CH4 separation comparing with the gas separation results in pure THF solution. 相似文献
10.
11.
13C NMR spectra were obtained for pure CH4, mixed CH4+THF, and mixed CH4+Neohexane hydrates in order to identify hydrate structure and cage occupancy of guest molecules. In contrast to the pure
CH4 hydrates, the NMR spectra of the mixed CH4+THF hydrate verified that methane molecules could occupy only the small portion of 512 cages because the addition of THF, water-soluble guest component, to aqueous solution prevents the complete filling of methane
molecules into small cages. Furthermore, from these NMR results one important conclusion can be made that methane molecules
can’t be enclathrated at all in the large 51264 cages of structure II. In addition, gas uptake measurements were carried out to determine methane amount consumed during
pure and mixed hydrate formation process. The moles of methane captured into pure CH4 hydrate per mole of water were found to be similar to the full occupancy value, while the moles of methane captured into
the mixed CH4+THF hydrate per moles of water were much lower than the ideal value. The overall results drawn from this study can be usefully
applied to storage and transportation of natural gas. 相似文献
12.
Natural gas hydrates easily form in pipelines, causing potential safety issues during oil and gas production and transportation. Injecting gas hydrate inhibitors is one of the most effective methods for preventing gas hydrate formation or aggregation. However, some thermodynamic hydrate inhibitors are toxic and harmful to the environment, whereas degradation of kinetic inhibitors is difficult. Therefore, environmentally friendly and easily biodegradable novel green inhibitors have been proposed and investigated. This paper provides a short but systematic review of the inhibitory performance of amino acids, antifreeze proteins, and ionic liquids. For different hydrate formation systems, the influences of the inhibitor type, structure, and concentration on the inhibitory effects are summarized. The mechanism of green inhibitors as kinetic inhibitors is also discussed. The progress described here will facilitate further developments of such green inhibitors for gas hydrate formation. 相似文献
14.
15.
In part 2 of the paper simplified unsteady-mass (and momentum-) balance equations of melt polymer resin in the cavities of
GAIM were proposed, as a time-dependent rule of thumb, to constitute a novel flow model in GAIM under the configuration of
two fan-shaped geometries connected with a gas nozzle. Upon performing a simulation on them with commercial software (MOLDFLOW),
we compared the time evolution of simulated gas penetration lengths with the those of unsteady trajectory on the gas flow
in GAIM by the suggested novel flow model in the fan-shaped cavities in order to check the precision of model-predicted gas
penetration lengths as well as the consistency of its predicted direction. The results by the suggested novel flow model were
satisfactory to fit the trajectory simulated with commercial software (MOLDFLOW). 相似文献
16.
Isabel A.A.C. Esteves Marta S.S. Lopes Pedro M.C. Nunes Jos P.B. Mota 《Separation and Purification Technology》2008,62(2):281-296
Experimental results are presented for the adsorption equilibria of methane, ethane, propane, butane, carbon dioxide, and nitrogen, as well as natural gas odorants tert-butyl mercaptan and tetrahydrothiophene, on an activated carbon with the desirable characteristics for use in a guard bed for adsorbed natural gas storage, but that can also be applied for separation of biogas components, such as carbon dioxide and nitrogen. The adsorption experiments were performed using both open- and closed-loop gravimetry over the pressure and temperature ranges of 0–9 MPa and 273–325 K, respectively. The two odorants were analyzed at the very low concentrations usually found in natural gas (0–25 mg/(N m3)). The experimental data were successfully correlated by the adsorption potential theory and collapsed into a single temperature-independent characteristic curve. This analysis allows for extrapolation of the adsorption data to higher alkanes, for which no experimental data are available, in order to span the global composition of a typical natural gas stream. The adsorption equilibrium data for methane, carbon dioxide and nitrogen were fitted to the Toth and Sips isotherm models and their isosteric heats of adsorption were determined. The preferential adsorption capacity for carbon dioxide indicates that the carbon can be used for methane purification from natural gas, carbon dioxide sequestration from flue gas, or biogas purification. 相似文献
17.
固井环空气窜机理和防窜水泥浆体系及其措施 总被引:3,自引:0,他引:3
如何防止环空气窜一直是固井技术研究的重点之一,为此国内外各个固井公司进行了大量的系统研究工作。在详细介绍环空气窜形成的机理、预测方法以及防气窜水泥浆体系和工艺技术措施基础上对防气窜固井工艺技术提出了一些建议。 相似文献
18.
水合物技术在能源和气候领域有着广阔的应用前景,有望成为应对能源挑战和气候变化的关键技术。但目前该技术存在着水合物生成速率慢、气体消耗量低的缺点,限制了水合物技术的工业化发展。从微观机理的角度,梳理和总结了关于气体水合物生成机制的理论观点,简述了驱动力和气体溶解度在水合物成核过程中的影响,介绍了表面活性剂和纳米粒子对水合物形成的影响机理以及常用的微观分析技术。分析发现,气体水合物的形成机制时至今日仍未有统一定论,对于促进剂作用机理的研究也不够充分,现有的微观分析手段难以捕捉水合物形成过程中的分子行为。这些问题限制了水合物技术向更快、更高效方面发展。探究水合物技术的相关机理,了解各类影响因素的作用原理,探索新的分析手段,将有助于突破水合物技术的瓶颈,为寻找更佳性能的促进剂、更高效地合成水合物探明道路。 相似文献
19.
水合物技术在能源和气候领域有着广阔的应用前景,有望成为应对能源挑战和气候变化的关键技术。但目前该技术存在着水合物生成速率慢、气体消耗量低的缺点,限制了水合物技术的工业化发展。从微观机理的角度,梳理和总结了关于气体水合物生成机制的理论观点,简述了驱动力和气体溶解度在水合物成核过程中的影响,介绍了表面活性剂和纳米粒子对水合物形成的影响机理以及常用的微观分析技术。分析发现,气体水合物的形成机制时至今日仍未有统一定论,对于促进剂作用机理的研究也不够充分,现有的微观分析手段难以捕捉水合物形成过程中的分子行为。这些问题限制了水合物技术向更快、更高效方面发展。探究水合物技术的相关机理,了解各类影响因素的作用原理,探索新的分析手段,将有助于突破水合物技术的瓶颈,为寻找更佳性能的促进剂、更高效地合成水合物探明道路。 相似文献
20.
A horizontal tubular loop bioreactor (HTLB) was used for production of biomass from natural gas. Hydrodynamic characterizations (mixing time and gas hold up) and mass transfer coefficients were considered in the HTLB (L=2.2 m, H=0.4 m and D=0.03 m) as functions of design parameters, i.e., horizontal length to diameter ratio (L/D) and volume of gas-liquid separator (S) as well as operational parameters, i.e., superficial gas and liquid velocities (UsG, UsL). In addition, flow regime in different gas and liquid flow rates was investigated. It was observed from experimental results that UsL has remarkable effects on gas hold up and kLa due to its influence on mixing time. The volumetric mass transfer coefficients for oxygen (kLaO2) and methane (kLaCH4) were determined at different geometrical and operational factors. In average, the amount of oxygen consumption for metabolism is approximately 1.4 times higher than that of methane. In bubble flow regime, the HTLB was used for biomass production, too. A gas mixture of 50% methane and 50% oxygen (based on results of dry cell weight, optical density and doubling time) was the best gas mixture inlet for biomass production. The empirical correlations for mixing time, gas hold up and kLa in terms of UsG, UsL, L/D and volume of gas-liquid separator were obtained and expressed separately. 相似文献