首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 51 毫秒
1.
Although recent implementations of analog iterative decoders have proven their potential for higher decoding speed and less power consumption than their digital counterparts, the CMOS or conventional BiCMOS technologies used so far seem to be incapable to cope with the need for high throughput that high-speed applications require. Within this context this work presents the design and test results of a high-speed analog SISO (Soft-Input Soft-Output) channel decoder for an 8-bit trellis code by exploiting the high-speed features of SiGe heterojunction bipolar transistors (HBTs). It is one of the first successful implementations of an error-correcting decoder in SiGe BiCMOS technology, which incorporates a high-speed I/O interface. A high-level model of the mismatch effects indicates that there is no significant performance penalty. Moreover, simulations and performance evaluations of an analog Turbo decoder based on the designed SISO decoder are provided. Even though the IC of the SISO module was tested at a throughput up to 3 Mbps, simulation results show that the decoder is capable to operate at 50 Mbps. The measured power consumption is 860 mW and the die area is 3.4 × 3 mm2.  相似文献   

2.
This paper discusses the impact of flexibility when designing a Viterbi decoder for both convolutional and TCM codes. Different trade-offs have to be considered in choosing the right architecture for the processing blocks and the resulting hardware penalty is evaluated. We study the impact of symbol quantization that degrades performance and affects the wordlength of the rate-flexible trellis datapath. A radix-2-based architecture for this datapath relaxes the hardware requirements on the branch metric and survivor path blocks substantially. The cost of flexibility in terms of cell area and power consumption is explored by an investigation of synthesized designs that provide different transmission rates. Two designs are fabricated in a digital 0.13- $mu{hbox {m}}$ CMOS process. Based on post-layout simulations, a symbol baud rate of 168 Mbaud/s is achieved in TCM mode, equivalent to a maximum throughput of 840 Mbit/s using a 64-QAM constellation.   相似文献   

3.
Soft-output decoding has evolved as a key technology for new error correction approaches with unprecedented performance as well as for improvement of well established transmission techniques. In this paper, we present a high-speed VLSI implementation of the soft-output Viterbi algorithm, a low complexity soft-output algorithm, for a 16-state convolutional code. The 43 mm2 standard cell chip achieves a simulated throughput of 40 Mb/s, while tested samples achieved a throughput of 50 Mb/s. The chip is roughly twice as big as a 16-state Viterbi decoder without soft outputs. It is thus shown with the design that transmission schemes using soft-output decoding can be considered practical even at very high throughput. Since such decoding systems are more complex to design than hard output systems, special emphasis is placed on the employed design methodology  相似文献   

4.
In this paper, a low-power Viterbi decoder design based on scarce state transition (SST) is presented. A low complexity algorithm based on a limited search algorithm, which reduces the average number of the add-compare-select computation of the Viterbi algorithm, is proposed and seamlessly integrated with the SST-based decoder. The new decoding scheme has low overhead and facilitates low-power implementation for high throughput applications. We also propose an uneven-partitioned memory architecture for the trace-back survivor memory unit to reduce the overall memory access power. The new Viterbi decoder is designed and implemented in TSMC 0.18-mum CMOS process. Simulation results show that power consumption is reduced by up to 80% for high throughput wireless systems such as Multiband-OFDM Ultra-wideband applications.  相似文献   

5.
This paper describes a 4-state rate-1/2 analog convolutional decoder fabricated in 0.8-μm CMOS technology. Although analog implementations have been described in the literature, this decoder is the first to be reported realizing the add-compare-select section entirely with current-mode analog circuits. It operates at data rates up to 115 Mb/s (channel rate 230 Mb/s) and consumes 39 mW at that rate from a single 2.8-V power supply. At a rate of 100 Mb/s, the power consumption per trellis state is about 1/3 that of a comparable digital system. In addition, at 50 Mb/s (the only rate at which comparative data were available), the power consumption per trellis state is similarly about 1/3 that of the best competing analog realization (i.e., excluding, for example, PR4 detectors which use a simplified form of the Viterbi algorithm). The chip contains 3.7 K transistors of which less than 1 K are used in the analog part of the decoder. The die has a core area of 1 mm2, of which about 1/3 contains the analog section. The measured performance is close to that of an ideal Viterbi decoder with infinite quantization. In addition, a technique is described which extends the application of the circuits to decoders with a larger number of states. A typical example is a 64-state decoder for use in high-speed satellite communications  相似文献   

6.
Although it possesses reduced computational complexity and great power saving potential, conventional adaptive Viterbi algorithm implementations contain a global best survivor path metric search operation that prevents it from being directly implemented in a high-throughput state-parallel decoder. This limitation also incurs power and silicon area overhead. This paper presents a modified adaptive Viterbi algorithm, referred to as the relaxed adaptive Viterbi algorithm, that completely eliminates the global best survivor path metric search operation. A state-parallel decoder VLSI architecture has been developed to implement the relaxed adaptive Viterbi algorithm. Using convolutional code decoding as a test vehicle, we demonstrate that state-parallel relaxed adaptive Viterbi decoders, versus Viterbi counterparts, can achieve significant power savings and modest silicon area reduction, while maintaining almost the same decoding performance and very high throughput  相似文献   

7.
深入研究了基于Altera的Viterbi v4.3.0 IP核实现高速维特比译码器的测试方法,详细分析了译码器的Atlantic接口信号,给出了采用Paralle1结构Viterbi译码器的仿真结果.研究结果表明应用Viterbi v4.3.0能够设计出符合不同性能要求的高性能维特比译码器,采用面向数据包传输的Atlantic接口使Viterbi译码器具有很高的吞吐量.  相似文献   

8.
Error-correcting convolutional codes provide a proven mechanism to limit the effects of noise in digital data transmission. Although hardware implementations of decoding algorithms, such as the Viterbi algorithm, have shown good noise tolerance for error-correcting codes, these implementations require an exponential increase in very large scale integration area and power consumption to achieve increased decoding accuracy. To achieve reduced decoder power consumption, we have examined and implemented decoders based on the reduced-complexity adaptive Viterbi algorithm (AVA). Run-time dynamic reconfiguration is performed in response to varying communication channel-noise conditions to match minimized power consumption to required error-correction capabilities. Experimental calculations indicate that the use of dynamic reconfiguration leads to a 69% reduction in decoder power consumption over a nonreconfigurable field-programmable gate array implementation with no loss of decode accuracy.  相似文献   

9.
Datapath widths in state-of-the-art Turbo and Viterbi decoder implementations depend on estimated upper bounds of the differences of processed metrics. Aiming at highest area and energy efficiency, this paper presents guidelines for designing Turbo and Viterbi decoder datapaths with minimal widths. This is based on maximum absolute values of branch, state and path metric differences within theMax-Log-MAP respectively Viterbi decoding algorithm applying modulo normalization. The proposed methodology for determining the maximum absolute values covers punctured as well as n-input binary convolutional and Turbo codes so it accommodates higherradix add-compare-select operations. Maximum absolute values of metric differences and minimum datapath widths are presented for the 3GPP-LTE, DVB-RCS2 and IEEE-802.16 (WiMAX) compliant Turbo decoders and for the IEEE-802.11 (Wi-Fi), IEEE-802.16 (WiMAX) and 3GPP-LTE compliant Viterbi decoders. Besides, a new dynamic branch-metric saturation scheme is presented, which enables a further datapath width reduction within Turbo decoders. In total, a datapath width reduction of two bits (?20 %) is achieved applying radix-4 Max-Log-MAP arithmetic. An overall area-time-energy complexity reduction of 31% is achieved for a soft-input soft-output decoder and of 24% for the LTE Turbo decoder.  相似文献   

10.
An advanced, high-speed, and universal-coding-rate Viterbi decoder VLSI implementation is presented. Two novel circuit design schemes have been proposed: scarce state transition (SST) decoding and direct high-coding-rate convolutional code generation and variable-rate decoding. SST makes it possible to omit the final decision circuit and to reduce the required path memory length without degrading error probability performance. Moreover, the power consumption of the SST Viterbi decoder is significantly reduced when implemented as a CMOS device. These features overcome the speed limits of high-speed and high-coding-gain Viterbi decoder VLSIs in the rate one-half mode imposed by the thermal limitation. The other Viterbi decoding scheme makes it possible to realize a simple and variable coding-rate forward-error-correction circuit by changing only the branch metric calculation ROM tables. By employing these schemes, high-speed (25-Mb/s) and universal-coding-rate Viterbi decoder VLSIs have been developed  相似文献   

11.
Viterbi解码器RTL级设计优化   总被引:1,自引:0,他引:1  
喻希 《现代电子技术》2006,29(23):137-139,142
当今芯片产业竞争激烈,速度低、面积大、功耗高的产品难以在市场中占有一席之地。Viterbi解码器作为一种基于最大后验概率的最优化卷积码解码器,被广泛应用于多种数字通信系统中,却由于其较高算法复杂程度,给芯片设计带来了挑战。针对芯片的速度、面积和功耗,通过对Viterbi解码器RTL级设计的若干优化方法进行研究和讨论,实现了一个应用于DVB-S系统的面积约为2万门的Viterbi解码器。  相似文献   

12.
A high-speed Viterbi decoder VLSI with coding rate R=1/2 and constraint length K=7 for bit-error correction has been developed using 1.5-/spl mu/m n-well CMOS technology. To reduce both hardware size and power dissipation, a recently developed scarce-state-transition (SST) Viterbi decoding scheme has been utilized. In addition, three-layer metallization and an advanced hierarchical macrocell design method (HMCM) have been adopted to improve packing density and reduce chip size. As a result, active chip area has been reduced by half, compared to the conventional standard cell design method (SCM) with two-layer metallization, and 42 K gates have been integrated on a chip with a die size of 9.52/spl times/10.0 mm/SUP 2/. The VLSI decoder has achieved a maximum data throughput rate of 23 Mb/s with a net coding gain of 4.4 dB (at 10/SUP -4/ bit-error rate). The chip dissipates only 825 mW at a data rate of 10 Mb/s.  相似文献   

13.
Limited search trellis decoding algorithms have great potentials of realizing low power due to their largely reduced computational complexity compared with the widely used Viterbi algorithm. However, because of the lack of operational parallelism and regularity in their original formulations, the limited search decoding algorithms have been traditionally ruled out for applications demanding very high throughput. We believe that, through appropriate algorithm and hardware architecture co-design, certain limited search trellis decoding algorithms can become serious competitors to the Viterbi algorithm for high-throughout applications. Focusing on the well-known T-algorithm, this paper presents techniques at the algorithm and VLSI architecture levels to design fully parallel T-algorithm limited search trellis decoders. We first develop a modified T-algorithm, called SPEC-T, to improve the algorithmic parallelism. Then, based on the conventional state-parallel register exchange Viterbi decoder, we develop a parallel SPEC-T decoder architecture that can effectively transform the reduced computational complexity at the algorithm level to the reduced switching activities in the hardware. We demonstrate the effectiveness of the SPEC-T design solution in the context of convolutional code decoding. Compared with state-parallel register exchange Viterbi decoders, the SPEC-T convolutional code decoders can achieve almost the same throughput and decoding performance, while realizing up to 56% power savings. For the first time, this work provides an approach to exploit the low power potential of the T-algorithm in very high throughput applications.  相似文献   

14.
Design of a 20-mb/s 256-state Viterbi decoder   总被引:1,自引:0,他引:1  
The design of high-throughput large-state Viterbi decoders relies on the use of multiple arithmetic units. The global communication channels among these parallel processors often consist of long interconnect wires, resulting in large area and high power consumption. In this paper, we propose a data transfer oriented design methodology to implement a low-power 256-state rate-1/3 Viterbi decoder. Our architectural level scheme uses operation partitioning, packing, and scheduling to analyze and optimize interconnect effects in early design stages. In comparison with other published Viterbi decoders, our approach reduces the global data transfers by up to 75% and decreases the amount of global buses by up to 48%, while enabling the use of deeply pipelined datapaths with no data forwarding. In the register-transfer level (RTL) implementation, we apply precomputation in conjunction with saturation arithmetic to further reduce power dissipation with provably no coding performance degradation. Designed using a 0.25 /spl mu/m standard cell library, our decoder achieves a throughput of 20 Mb/s in simulation and dissipates only 0.45 W.  相似文献   

15.
A new class of asynchronous pipelines is proposed, called lookahead pipelines (LP), which use dynamic logic and are capable of delivering multi-gigahertz throughputs. Since they are asynchronous, these pipelines avoid problems related to high-speed clock distribution, such as clock power, management of clock skew, and inflexibility in handling varied environments. The designs are based on the well-known PSO style of Williams and Horowitz as a starting point, but achieve significant improvements through novel protocol optimizations: the pipeline communication is structured so that critical events can be detected and exploited earlier. A special focus of this work is to target extremely fine-grain or gate-level pipelines, where the datapath is sectioned into stages, each consisting of logic that is only a single level deep. Both dual-rail and single-rail pipeline implementations are proposed. All the implementations are characterized by low-cost control structures and the avoidance of explicit latches. Post-layout SPICE simulations, in 0.18-mum technology, indicate that the best dual-rail LP design has more than twice the throughput (1.04 giga data items/s) of Williams' PSO design, while the best single-rail LP design achieves even higher throughput (1.55 giga data items/s).  相似文献   

16.
The Viterbi algorithm (VA) is a recursive optimal solution to the state sequence estimation problem. The recursive nature of this algorithm puts limitations on high-speed implementations of Viterbi decoders. The authors propose a nonrecursive suboptimal decoding algorithm for the PR4 channel. The new decoder has negligible performance loss  相似文献   

17.
本文介绍了高速数字流水Viterbi译码器的VLSI设计。在符号4值系统的基础上,给出Viterbi算法的新的功能分解公式,并介绍了用于译码器实现的两个重要的快速运算部件ADD和MAX的原理及其现场可编程(序)门阵列(FPGA)实现。文中详细讨论了译码器的VLSI结构、设计和性能分析。本文给出的Viterbi译码器可塑性强,并具有高度的并行性和很高的数据吞吐率。  相似文献   

18.
The Viterbi algorithm (VA) is a recursive optimal solution to the state sequence estimation problem. The recursive nature of this algorithm puts limitations on high-speed implementations of Viterbi decoders. The authors propose a nonrecursive suboptimal decoding algorithm for the PR4 channel. The new decoder has negligible performance loss  相似文献   

19.
The Viterbi algorithm is a maximum likelihood means for decoding convolutional codes and has thus played an important role in applications ranging from satellite communications to cellular telephony. In the past, Viterbi decoders have usually been implemented using digital circuits. The speed of these digital decoders is directly related to the amount of parallelism in the design. As the constraint length of the code increases, parallelism becomes problematic due to the complexity of the decoder. In this paper an artificial neural network (ANN) Viterbi decoder is presented. The ANN decoder is significantly faster than comparable digital-only designs due to its fully parallel architecture. The fully parallel structure is obtained by implementing most of the Viterbi algorithm using analog neurons as opposed to digital circuits. Several modifications to the ANN decoder are considered, including an analog/digital hybrid design that results in an extremely fast and efficient decoder. The ANN decoder requires one-sixth the number of transistors required by the digital decoder. The connection weights of the ANN decoder are either +1 or -1, so weight considerations in the implementation are eliminated. This, together with the design's modularity and local connectivity, makes the ANN Viterbi decoder a natural fit for VLSI implementation. Simulation results are provided to show that the performance of the ANN decoder matches that of an ideal Viterbi decoder  相似文献   

20.
Reed-Solomon (RS) codes play an important role in providing the error correction and the data integrity in various communication/storage applications. For high-speed applications, most RS decoders are implemented as dedicated application-specified integrated circuits (ASICs) based on parallel architectures, which can deliver high data throughput rate. For lower-speed applications, the RS decoding operations are usually performed by using fine-grained processing elements (PE) controlled by a programmable digital signal processing (DSP) core, which provides high flexibility. In this paper, we propose a novel m-PE multi-symbol-sliced (MSS) RS datapath structure. The m-PE RS architecture is a highly scalable design and can be dynamically reconfigured at 1-PE, 2-PE,...,m/2-PE, and m-PE modes to deliver necessary data throughput rate. With the help of the gated-clock scheme to turn off the idle PEs, the proposed runtime configurable ASIC design provides good tradeoff between the data throughput rate and the power consumption. Hence, it can save energy to extend the battery life of the portable devices. We demonstrate a prototyping design using 4 PEs by using UMC 0.18-/spl mu/m CMOS technology. The design can be dynamically reconfigured to be operated at 1-PE, 2-PE, and 4-PE modes, with performance of 140 Mb/s at 18.91 mW, 280 Mb/s at 28.77 mW, and 560 Mb/s at 48.47 mW, respectively. Compared with existing RS designs, the proposed m-PE RS decoder has better normalized area/power efficiency than most DSP-type and ASIC-type RS designs. The reconfigurable feature makes our design a good candidate for the error control coding (ECC) unit of the storage system in power-aware portable devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号