首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HTP高铌钢形变奥氏体再结晶规律研究   总被引:1,自引:0,他引:1  
采用阶梯试样,通过光镜观察,研究了0.08%NbHTP(High temperature processing)钢形变奥氏体再结晶规律,分析了变形温度、变形量等工艺参数对变形奥氏体再结晶百分数的影响,得出了实验钢变形奥氏体再结晶图。结果表明,变形量为60%时,试验钢的完全再结晶临界温度为1070℃,未再结晶临界温度为900℃,分别比含Nb0.04%的普通HSLA钢相应温度提高了120℃和100℃,热机械加工性能得到大幅度提高,证明了高含量Nb对奥氏体再结晶的强烈阻滞作用。  相似文献   

2.
低碳钢奥氏体晶粒尺寸的控制   总被引:15,自引:0,他引:15  
杨王玥  胡安民  孙祖庆 《金属学报》2000,36(10):1050-1054
分别采用高温形变再结晶和低温变形后快速加热冷却等两种方法获得尺寸不同的低碳钢奥氏体晶粒组织,通过控制形变温度、形变量、应变速率及变形道次等工艺参数。低碳钢奥氏体高温形变动态再结晶可使晶粒细化到15-20μm左右,奥氏体动态再结晶晶粒尺寸取决于Zener-Hollomon(Z)参数,提高应变速率及降低形变温度都有利于Z参数增大,流变相力峰值较高,奥氏体动态再结晶晶粒减小,通过奥氏体化合淬火-650℃  相似文献   

3.
铌对低碳微合金钢奥氏体变形及静态再结晶的影响   总被引:1,自引:0,他引:1  
用Gleeble-3500热模拟试验机研究了两种不同铌含量低碳微合金钢热形变奥氏体的静态再结晶。不同参数的平面应变双道次压缩试验结果表明,铌通过在钢中固溶或析出第二相粒子可以有效地抑制奥氏体变形及静态再结晶。而且道次间隔时间越长,铌对形变奥氏体静态再结晶抑制作用越明显。  相似文献   

4.
通过在Gleeble-3500热模拟试验机上进行双道次压缩模拟试验,研究了Ti-Mo复合微合金化钢和Ti-Zr-Mo复合微合金化钢在875、925、975和1025 ℃四个温度下形变奥氏体的静态再结晶过程。分析了两种试验钢在双道次压缩模拟时的真应力-真应变曲线,建立了两种试验钢的静态再结晶动力学模型,计算了两种试验钢奥氏体静态再结晶激活能,采用高分辨透射电镜观察了不同温度双道次压缩后两种试验钢中形变诱导析出相和大颗粒未溶相的形貌和种类,并对试验钢的形变储能密度进行了简单比较。结果表明,Zr的添加可以提高Ti-Mo复合微合金化钢在变形过程中的变形抗力,使试样在热变形过程中积累的形变储能增多,同时降低形变奥氏体的静态再结晶激活能,使奥氏体的再结晶更容易发生。Zr可以替代Ti与O、S等形成大颗粒未溶相,使试验钢静态再结晶过程中析出更多细小弥散的形变诱导析出相,使试验钢中形变奥氏体的静态再结晶过程出现延迟。  相似文献   

5.
黄杰  徐洲  邢新 《热加工工艺》2003,(3):12-13,45
研究了含钒、钛的微合金钢高温轧制变形时奥氏体的动、静态再结晶行为,分别确定了不同热变形条件及等温停留对奥氏体组织状态的影响(ε—Z图及τ-ε图)。在此基础上,与动态再结晶图中的Z参数相对应,引入Y参数简化奥氏体静态再结晶图。  相似文献   

6.
低碳低合金钢形变奥氏体再结晶规律研究   总被引:1,自引:1,他引:0  
采用阶梯试样,通过光学显微镜观察,研究了低碳Mn、Ni、Mo、Nb、Cr、V等低合金化钢形变奥氏体再结晶规律,分析了变形温度、变形量等工艺参数对变形奥氏体再结晶百分数的影响,绘制了实验钢变形奥氏体再结晶图。结果表明,在变形量为50%、轧制温度为1050℃和在变形量为70%、轧制温度为1000℃时,实验钢均发生完全再结晶。为此,应控制再结晶区终轧温度高于1000℃,多道次累积变形量大于60%;控制非再结晶区开轧温度低于950℃,第一道次变形量15%~20%。  相似文献   

7.
邢新  徐洲  黄杰 《上海金属》2003,25(5):12-15
研究了钒钛微舍金钢热变形奥氏体的再结晶行为,根据热变形奥氏体的动态再结晶图和静态再结晶图可以综合判断在高温轧制过程中轧制温度、轧制速率、压下率、停留温度以及停留时间对热变形奥氏体组织状态的影响,从而为实际生产工艺的确定提供理论依据。  相似文献   

8.
通过Gleeble-1500热模拟机对SPCE级冷轧深冲板进行热压缩试验,在变形温度900~1100℃和变形速率0.01~1 s-1条件下研究了微碳钢奥氏体变形期间的动态再结晶行为。分析了变形温度、应变速率对动态再结晶的影响,建立了相应的动态再结晶模型,得出了微碳钢动态再结晶形变激活能,并对粗轧5道次的奥氏体动态再结晶情况进行了分析和验证。  相似文献   

9.
高强度奥氏体不锈钢的热变形行为及其热加工图   总被引:4,自引:1,他引:3  
从工业生产的不锈钢大型锻件上取样,在应变速率0.01~10s-1、变形温度850~1250℃条件下采用Gleeble3500热模拟试验机进行了压缩热变形试验,研究了一种高强度奥氏体不锈钢热变形力学行为和再结晶规律,测得热变形激活能为455kJmol,并列出了这种高强度奥氏体不锈钢的热变形方程ε=4.173·1016[sinh(α·σp)]4.06exp-455000RT。基于动态材料模型建立了其在常见形变量之下的热加工图(ProcessingMap)。试验结果说明,该奥氏体不锈钢具有较高的动态再结晶温度,在1150℃变形能量消耗效率达到最大值0.4。  相似文献   

10.
采用Gleeble-3500热模拟试验机,对Q460GJE钢进行了单道次热压缩试验,研究了试验钢形变奥氏体动态再结晶行为,并建立了试验钢的再结晶图。结果表明:在较高变形温度和较低应变速率下,试验钢容易发生动态再结晶;当应变速率高于1 s-1时,动态再结晶难以发生。试验钢动态再结晶激活能为438.5 kJ/mol,并确定了动态再结晶临界应变与Z参数之间的关系。研究结果可为Q460GJE钢现场轧制工艺的制定提供依据。  相似文献   

11.
超声振动改变碳素钢热变形条件,从而影响形变后微观组织。通过仿真和试验分析了超声振动条件下两组常用碳素钢奥氏体再结晶模型的适用性。结果表明:Q235圆柱试样1150℃加热5 min完成奥氏体化后,超声振动形变处理试样内奥氏体再结晶平均晶粒尺寸更接近C. M. Sellars模型的计算结果。试样950℃加热完成奥氏体化,800~700℃温度区间超声振动形变处理,因试样表层不具备发生铁素体动态再结晶温度条件,距表层50μm深度范围内,超声振动剧烈形变导致组织纳米化;而试样内部超声振动造成了高Z值条件,铁素体动态再结晶晶粒明显细化。  相似文献   

12.
用Gleeble-1500热模拟试验机对中碳V-N微合金钢在不同变形温度(900~1050℃)及不同变形速率(0.005~30 s-1)的奥氏体区热变形行为进行研究。通过建立真应力-真应变曲线、动态再结晶图、功率耗散效率因子(η)图和应变速率敏感因子(m)图综合分析其热变形行为。结果表明,试验钢在1050℃、1 s-1变形条件下发生了动态再结晶,其真应力-真应变曲线、动态再结晶图、m图等方法得出的结果相互吻合。其中η图与m图差异很小,但由于应变速率敏感因子具有合理的物理意义,因此建议利用m图分析材料的热变形行为和选取最佳热变形工艺参数。  相似文献   

13.
在Gleeble-1500热模拟机上实施热压缩试验,研究2195铝锂合金在变形温度360~500 ℃,应变速率0.1~10 s-1时的热变形行为,并通过OM和EBSD研究了热变形中微观组织的演变。基于动态材料模型理论及Zener-Holloman参数,构建了2195铝锂合金的应变量为50%时的加工图及本构方程。结果表明,流变应力随变形温度降低或者应变速率的增加而提高,高温软化机制包括动态回复与动态再结晶。利用加工图及显微组织分析确定了试验参数范围内热变形过程的最佳工艺参数为480 ℃/10 s-1;发现失稳区形变组织和再结晶组织呈层状交替分布,且随着变形温度降低,形变组织层厚度增加;稳定区的微观组织具有明显的动态再结晶特征,形变组织基本消失。  相似文献   

14.
在变形温度为1223~1423 K及应变速率为0.01~10 s-1的条件下,利用MMS-300热模拟试验机开展单道次压缩变形实验,结合SEM-EBSD和TEM等观察分析技术,研究了一种高锰奥氏体孪晶诱发塑性(TWIP)钢的高温热变形及再结晶行为,对其动态再结晶过程中的组织演变规律及其与应力-应变曲线的相关性进行了分析和表征.结果表明,该高锰奥氏体TWIP钢的热变形行为对应变速率较敏感;当应变速率低于0.1 s-1时,热变形过程中发生动态再结晶;当应变速率高于1 s-1时,发生动态回复.通过回归计算建立了该高锰奥氏体TWIP钢的热变形本构方程,分析认为动态再结晶过程中的组织演变规律与其应力-应变曲线密切相关.随着应变量的增加,晶界迁移诱导再结晶形核;形变量进一步增加,产生大量亚晶界;相邻亚晶界上的位错攀移和滑移等运动使晶界合并,导致再结晶晶粒形成.  相似文献   

15.
采用Gleeble-3800热力模拟试验机在温度为1123~1423 K、应变速率为0.001~10 s~(-1)的条件下对2101双相不锈钢进行了热压缩实验,以研究热变形参数对其热加工行为的影响规律。结果表明,相同应变速率下,随温度升高,流变曲线由动态再结晶向动态回复转变。变形速率由0.001 s~(-1)增至0.01和0.1 s~(-1)提高了动态再结晶温度范围,而1和10 s~(-1)的较高应变速率不利于动态再结晶。在应变速率为0.001~0.1s~(-1)、变形温度为1253~1323 K时,峰值应力所对应的应变越小,奥氏体动态再结晶越容易发生,有利于等轴状再结晶组织形成。低应变速率下,变形温度升高使奥氏体再结晶晶粒长大,且Zener-Hollomon参数较大时,动态再结晶效果变差与Mn稳定奥氏体能力较Ni弱有关。基于热变形方程计算得到该不锈钢热变形激活能Q=464.49 k J/mol,略高于2205双相不锈钢,并建立了峰值流变应力本构方程。结合不同变形条件下的应变曲线和显微组织,根据热加工图确定了最佳热加工区域为应变速率在0.001~0.1 s~(-1)、变形温度为1220~1350 K,该区域功率耗散系数处于0.40~0.47的较高值,发生了明显奥氏体动态再结晶。  相似文献   

16.
利用Gleeble热力模拟、EBSD和TEM等方法,研究了Ni-30%Fe合金热变形后奥氏体的亚动态软化行为,分析了微观亚结构演化对奥氏体亚动态软化机制的影响。结果表明,亚结构恢复和亚动态再结晶是奥氏体亚动态软化的2种主要机制。当奥氏体内发生部分动态再结晶时,再结晶晶粒与变形基体间的储能差较大,热变形后保温过程的软化首先是通过亚动态再结晶进行;同时,变形基体内亚结构的恢复会逐渐降低变形基体内的形变储能,使晶界迁移速率降低而抑制亚动态再结晶的继续进行。而当奥氏体内动态再结晶发生完全时,在热变形后的保温过程中,再结晶晶粒内部因持续变形而形成的小角度亚结构会通过快速恢复而大量分解,形成不均匀的高密度位错会促进大角度晶界的局部迁移,从而促进晶粒的粗化,加速材料软化。  相似文献   

17.
采用Gleeble1500热模拟试验机研究了DC04钢的单道次压缩变形,通过金相组织及应力-应变曲线分析不同变形参数对动态再结晶行为的影响。结果发现,当形变速率为10s-1时,DC04钢主要以加工硬化和动态回复为主;当形变速率为5s-1时,1000~1100℃变形后,动态再结晶明显,900~950℃变形后以加工硬化和动态回复为主;当形变速率为0.1s-1时,850~1100℃变形后均发生了动态再结晶,900、1000℃变形后应力-应变曲线出现周期峰值。计算出实验用DC04钢的动态再结晶激活能为125.8kJ/mol,给出了DC04钢的动态再结晶区域图。  相似文献   

18.
通过一种铌微合金钢高温下(900~1100℃)不同应变速率(0.01~10s<'-1>)的热模拟单道次压缩试验,结合组织观察,研究了热变形参数对动态再结晶过程的影响,求出动态再结晶形变激活能及相关参数,建立了该钢的热变形本构方程.实验结果表明,合金元素的添加,由于固溶原子拖曳及析出物的钉扎作用,增加了动态再结晶激活能,显著抑制了该钢的动态再结晶及晶粒长大过程.原始奥氏体晶粒尺寸增大、变形温度降低及应变速率增大将抑制动态再结晶过程.  相似文献   

19.
韩宝军 《热加工工艺》2015,(4):110-112,119
研究了Fe-32%Ni合金奥氏体在1000℃、形变速率2×10-3 s-1试验条件下高温变形时的微观组织特征及其演变过程。采用光学显微镜(OM)、电子背散射衍射(EBSD)和透射电镜(TEM)对组织结构进行分析。结果表明:热变形奥氏体发生了不连续动态再结晶,根据形变奥氏体晶粒的位错分布特征,热变形动态再结晶晶粒分为3类:一是位错密度很低的细小晶粒;二是具有位错密度梯度的晶粒;三是高密度位错大体均匀分布的晶粒。  相似文献   

20.
利用热模拟、组织分析等手段研究了初始奥氏体晶粒尺寸对热轧低碳微合金钢动态再结晶临界应变的影响.在建立热变形Arrhenius本构模型的基础上,引入了Zenner-Hollomon因子描述变形温度和应变速率对热变形的影响,最终建立了初始奥氏体晶粒尺寸与Z参数和临界应变的函数关系模型.结果 表明:奥氏体晶粒尺寸越小,动态再结晶临界应变也越小,越有利于动态再结晶的发生.利用所建立的函数关系模型计算出的临界应变值与试验值接近,该模型能较准确的预测热轧低碳微合金钢的临界应变值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号