首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leupin OX  Hug SJ 《Water research》2005,39(9):1729-1740
Removing arsenic from contaminated groundwater in Bangladesh is challenging due to high concentrations of As(III), phosphate and silicate. Application of zero-valent iron as a promising removal method was investigated in detail with synthetic groundwater containing 500 microg/L As(III), 2-3mg/L P, 20mg/L Si, 8.2mM HCO3-, 2.5mM Ca2+, 1.6mM Mg2+ and pH 7.0. In a series of experiments, 1L was repeatedly passed through a mixture of 1.5 g iron filings and 3-4 g quartz sand in a vertical glass column (10mm diameter), allowing the water to re-aerate between each filtration. At a flow rate of 1L/h, up to 8 mg/L dissolved Fe(II) was released. During the subsequent oxidation of Fe(II) by dissolved oxygen, As(III) was partially oxidized and As(V) sorbed on the forming hydrous ferric oxides (HFO). HFO was retained in the next filtration step and was removed by shaking of the sand-iron mixture with water. Rapid phosphate removal provided optimal conditions for the sorption of As(V). Four filtrations lead to almost complete As(III) oxidation and removal of As(tot) to below 50 microg/L. In a prototype treatment with a succession of four filters, each containing 1.5 g iron and 60 g sand, 36 L could be treated to below 50 microg/L in one continuous filtration, without an added oxidant.  相似文献   

2.
Bacteria are widespread, abundant, geochemically reactive components of aquatic environments. In particular, iron-oxidizing bacteria, are involved in the oxidation and subsequent precipitation of ferrous ions. Due to this property, they have been applied in drinking water treatment processes, in order to accelerate the removal of ferrous iron from groundwaters. Iron also exerts a strong influence on arsenic concentrations in groundwater sources, while iron oxides are efficient adsorbents in arsenic removal processes. In the present study, the removal of arsenic (III and V), during biological iron oxidation has been investigated. The results showed that both inorganic forms of arsenic could be efficiently treated, for the concentration range of interest in drinking water (50-200microg/L). In addition, the oxidation of trivalent arsenic was found to be catalyzed by bacteria, leading to enhanced overall arsenic removal, because arsenic in the form of arsenites cannot be efficiently sorbed onto iron oxides. This method comprises a cost competitive technology, which can find application in treatment of groundwaters with elevated concentrations of iron and arsenic.  相似文献   

3.
A study on the removal of arsenic from real life groundwater using iron–chitosan composites is presented. Removal of arsenic(III) and arsenic(V) was studied through adsorption at pH 7.0 under equilibrium and dynamic conditions. The equilibrium data were fitted to Langmuir adsorption models and the various model parameters were evaluated. The monolayer adsorption capacity from the Langmuir model for iron chitosan flakes (ICF) (22.47 ± 0.56 mg/g for As(V) and 16.15 ± 0.32 mg/g for As(III)) was found to be considerably higher than that obtained for iron chitosan granules (ICB) (2.24 ± 0.04 mg/g for As(V); 2.32 ± 0.05 mg/g for As(III)). Anions including sulfate, phosphate and silicate at the levels present in groundwater did not cause serious interference in the adsorption behavior of arsenate/arsenite. The column regeneration studies were carried out for two sorption–desorption cycles for both As(III) and As(V) using ICF and ICB as sorbents. One hundred and forty-seven bed volumes of As(III) and 112 bed volumes of As(V) spiked groundwater were treated in column experiments using ICB, reducing arsenic concentration from 500 to <10 μg/l. The eluent used for the regeneration of the spent sorbent was 0.1 M NaOH. The adsorbent was also successfully applied for the removal of total inorganic arsenic down to <10 μg/l from real life arsenic contaminated groundwater samples.  相似文献   

4.
Influence of operating parameters on the arsenic removal by nanofiltration   总被引:3,自引:0,他引:3  
Arsenic contamination of surface and groundwater is a worldwide problem in a large number of Countries (Bangladesh, Argentina, Italy, USA, New Zealand, etc.). In many contaminated areas a continuous investigation of the available arsenic removal technologies is essential to develop economical and effective methods for removing arsenic in order to meet the new Maximum Contaminant Level (MCL) standard (10 μg/l) recommended by the World Health Organization (WHO).In this work the removal of pentavalent arsenic from synthetic water was studied on laboratory scale by using two commercial nanofiltration (NF) spiral-wound membrane modules (N30F by Microdyn-Nadir and NF90 by Dow Chemical). The influence of main operating parameters such as feed concentration, pH, pressure and temperature on the As rejection and permeate flux of both membranes, was investigated. An increase of pH and a decrease of operating temperature and As feed concentration led to higher As removal for both membranes, whereas higher transmembrane pressure (TMP) values slightly reduced the removal achievable with the N30F membrane. In both cases, the permeate flux increased with temperature and pressure and reached its maximum value at a pH of around 8.Among the parameters affecting the As rejection, feed concentration plays a key role for the production of a permeate stream respecting the limits imposed by WHO.  相似文献   

5.
This research studied As(III) and As(V) removal during electrocoagulation (EC) in comparison with FeCl3 chemical coagulation (CC). The study also attempted to verify chlorine production and the reported oxidation of As(III) during EC. Results showed that As(V) removal during batch EC was erratic at pH 6.5 and the removal was higher-than-expected based on the generation of ferrous iron (Fe2+) during EC. As(V) removal by batch EC was equal to or better than CC at pH 7.5 and 8.5, however soluble Fe2+ was observed in the 0.2-μm membrane filtrate at pH 7.5 (10-45%), and is a cause for concern. Continuous steady-state operation of the EC unit confirmed the deleterious presence of soluble Fe2+ in the treated water. The higher-than-expected As(V) removals during batch mode were presumed due to As(V) adsorption onto the iron rod oxyhydroxides surfaces prior to the attainment of steady-state operation. As(V) removal increased with decreasing pH during both CC and EC, however EC at pH 6.5 was anomalous because of erratic Fe2+ oxidation. The best adsorption capacity was observed with CC at pH 6.5, while lower but similar adsorption capacities were observed at pH 7.5 and 8.5 with CC and EC. A comparison of As(III) adsorption showed better removals during EC compared with CC possibly due to a temporary pH increase during EC. In contrast to literature reports, As(III) oxidation was not observed during EC, and As(III) adsorption onto iron hydroxides during EC was only 5-30% that of As(V) adsorption. Also in contrast to literature, significant Cl2 was not generated during EC, in fact, the rods actually produced a significant chlorine demand due to reduced iron oxides on the rod. Although Cl2 generation and As(III) oxidation are possible using a graphite anode, a combination of graphite and iron rods in the same EC unit did not produce As(III) oxidation. However, a two-stage process (graphite anode followed by iron anode in separate chambers) was effective in As(III) oxidation and removal. The competing ions, silica and phosphate interfered with As(V) adsorption during both CC and EC. However, the degree of interference depends on the concentration and presence of other competing ions. In particular, the presence of silica lowered the effect of phosphate with increasing pH due to silica’s own significant effect at high pHs.  相似文献   

6.
Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations.  相似文献   

7.
Nanoscale iron oxide particles were synthesized and deposited on porous alumina tubes to develop tubular ceramic adsorbers for the removal of arsenic, which is an extremely toxic contaminant even in very low concentrations. Its natural presence affects rural and low-income populations in developing countries in Latin America and around the world, which makes it essential to develop a user-friendly, low energy demanding and low cost treatment technology. The fabricated ceramic membranes can be operated with minimal trans-membrane pressure difference and do not require pumping. The support tubes and final membrane have been characterized by surface area and porosity measurements, permeability tests and scanning electron microscopy (SEM) imaging. Arsenic concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Due to its low cost and simple operation, the system can be applied as a point of use device for the treatment of arsenic contaminated groundwaters in developing countries.  相似文献   

8.
Sorption materials for arsenic removal from water: a comparative study   总被引:4,自引:0,他引:4  
Daus B  Wennrich R  Weiss H 《Water research》2004,38(12):2948-2954
Five different sorption materials were tested in parallel for the removal of arsenic from water: activated carbon (AC), zirconium-loaded activated carbon (Zr-AC), a sorption medium with the trade name 'Absorptionsmittel 3' (AM3), zero-valent iron (Fe(0)), and iron hydroxide granulates (GIH). Batch and column tests were carried out and the behavior of the two inorganic species (arsenite and arsenate) was investigated separately. The sorption kinetics of arsenate onto the materials followed the sequence Zr-AC > GIH = AM3 > Fe(0) > AC. A different sequence was obtained for arsenite (AC > Zr-AC = AM3 = GIH = Fe(0)). AC was found to enhance the oxidation reaction of arsenite in anaerobic batch experiments. The linear constants of the sorption isotherms were determined to be 377, 89 and 87 for Zr-AC, AM3 and GIH, respectively. The uptake capacities yielded from the batch experiment were about 7gl(-1) for Zr-Ac and 5gl(-1) for AM3. Column tests indicated that arsenite was completely removed. The best results were obtained with GIH, with the arsenate not eluting before 13100 pore volumes (inflow concentration 1 mg l(-1) As) which corresponds to a uptake capacity of 2.3 mg g(-1) or 3.7 g l(-1).  相似文献   

9.
Since 1997, over 135 well-head arsenic removal units have been installed in remote villages in the Indian state of West Bengal bordering Bangladesh. Every component of the arsenic removal treatment system including activated alumina sorbent is procured indigenously. Each unit serves approximately 200-300 households and contains about 100 L of activated alumina. No chemical addition, pH adjustment or electricity is required for operating these units. The arsenic concentration in the influent varies from around 100 μg/L to greater than 500 μg/L. In the treated water, arsenic concentration is consistently below 50 μg/L. The units are capable of removing both arsenites and arsenates from the contaminated groundwater for several months, often exceeding 10,000 bed volumes. In the top portion of the column, the dissolved iron present in ground water is oxidized by atmospheric oxygen into hydrated Fe(III) oxides or HFO particles which in turn selectively bind both As(III) and As(V). Upon exhaustion, these units are regenerated by caustic soda solution followed by acid wash. The arsenic-laden spent regenerant is converted into a small volume sludge (less than 500 g) and contained over a coarse sand filter in the same premise requiring no disposal. Many units have been operating for several years without any significant operational difficulty. The treated water is used for drinking and cooking. Most importantly, the villagers are responsible for the day to day operation and the upkeep of the units.  相似文献   

10.
This study is an efficient arsenic(V) removal from contaminated waters used as drinking water in adsorption process by zirconium(IV) loaded ligand exchange fibrous adsorbent. The bifunctional fibers contained both phosphonate and sulfonate groups. The bifunctional fiber was synthesised by graft polymerization of chloromethylstyrene onto polyethylene coated polypropylene fiber by means of electron irradiation graft polymerization technique and then desired phosphonate and sulfonate groups were introduced by Arbusov reaction followed by phosphorylation and sulfonation. Arsenic(V) adsorption was clarified in column methods with continuous flow operation in order to assess the arsenic(V) removal capacity in various conditions. The adsorption efficiency was evaluated in several parameters such as competing ions (chloride and sulfate), feed solution acidity, feed flow rate, feed concentration and kinetic performances at high feed flow rate of trace concentration arsenic(V). Arsenic(V) adsorption was not greatly changed when feed solutions pH at 3.0-7.0 and high breakthrough capacity was observed in strong acidic area below pH 2.2. Increasing the flow rate brings a decrease both breakthrough capacity and total adsorption. Trace level of arsenic(V) (0.015 mM) in presence of competing ions was also removed at high flow rate (750 h−1) with high removal efficiency. Therefore, the adsorbent is highly selective to arsenic(V) even in the presence of high concentration competing ions. The adsorbent is reversible and reusable in many cycles without any deterioration in its original performances. Therefore, Zr(IV) loaded ligand exchange adsorbent is to be an effective means to treat arsenic(V) contaminated water efficiently and able to safeguard the human health.  相似文献   

11.
Modeling a novel ion exchange process for arsenic and nitrate removal   总被引:2,自引:0,他引:2  
Kim J  Benjamin MM 《Water research》2004,38(8):2053-2062
Arsenate and nitrate can be removed quantitatively from drinking water by anion exchange. However, if the raw water contains substantial concentrations of sulfate or nitrate, the resin becomes exhausted quickly, and the requirements for regenerant (brine) can make the process unattractive. Previously, we described a modified ion exchange operating procedure for arsenic removal from solutions containing sulfate that could overcome this problem. This paper extends that work to solutions containing nitrate, and presents a mathematical model for the process. The selectivity coefficient for sulfate over nitrate of a strong base anion exchange resin increased dramatically with increasing ionic strength, partially counteracting the decrease in SO(4)/NO(3) separation factor predicted from mass action considerations. The value of this selectivity coefficient in different solutions can be used in conjunction with mass balances and solid/liquid equilibrium considerations to explore the brine requirement when the modified treatment process is applied to influent waters with various compositions. The modeling results indicate that, for relatively low influent nitrate concentrations, the volume of water treated per unit volume of brine used can be increased greatly by using the modified ion exchange process. At higher influent nitrate concentrations, the modified process remains advantageous, but is less so. The use of separate brine solutions to regenerate the upstream and downstream columns magnifies the benefits of the modified process significantly. If the sulfate in the brine is precipitated as CaSO(4)(s) rather than BaSO(4)(s), the brine usage rate increases by only 30-40%, even though the former solid is orders of magnitude more soluble than the latter.  相似文献   

12.
Bioremediation of arsenic (As)-contaminated soil using microorganisms has been a focus of research because it is environment friendly and cost-effective. The As-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 were exposed to 50 mg l− 1 of As(V), and the biotransformation of As and the concomitant variance of Eh and pH in the media were studied. Fresh weights of all three isolates increased and then decreased depended on cultivation period. After cultivation for 2 or 3 days, the As(V) added to the media had been completely changed into As(III), whilst As(V) was predominate in fungal cells with concomitantly little As(III) during cultivation. After 15 days, little monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) besides of As(V) and As(III) were found in the cells of T. asperellum SM-12F1, and the total As content was the highest in cells of P. janthinellum SM-12F4 (about 41.5 μg) according to the quantitative analysis of As speciation in cultures. Moreover, when cultivation period reached 3 days, the Eh and pH in the media of T. asperellum SM-12F1 (312.5 mV and 4.8), P. janthinellum SM-12F4 (411.1 mV and 4.2), and F. oxysporum CZ-8F1 (269.4 mV and 4.8) might not responsible for the reduction of As(V) based on the previous study. Therefore, it is speculated that import/export, reduction, and methylation of As are conducted in fungal cells. Future studies investigating the biochemical behaviour of fungi responding to As are needed to gain a better understanding of bioremediation of As-contaminated soils.  相似文献   

13.
Three white-rot fungi (Pleurotus sajor caju, Trametes versicolor and Phanerochaete chrysosporium) and one soft-rot fungi (Rhizopus oryzae) species confirmed their potential for future applications in the biological treatment of effluents derived from the secondary treatment of a bleached kraft pulp mill processing Eucalyptus globulus. Among the four species P. sajor caju and R. oryzae were the most effective in the biodegradation of organic compounds present in the effluent, being responsible for the reduction of relative absorbance (25-46% at 250 nm and 72-74% at 465 nm) and of chemical oxygen demand levels (74 to 81%) after 10 days of incubation. Laccase (Lac), lignin (Lip) and manganese peroxidases (MnP) expression varied among fungal species, where Lac and LiP activities were correlated with the degradation of organic compounds in the effluent treated with P. sajor caju. The first two axes of a principal component analysis explained 88.9% of the total variation among sub-samples treated with the four fungus species, after different incubation periods. All the variables measured contributed positively to the first component except for the MnP enzyme activity which was the only variable contributing negatively to the first component. Absorbances at 465 nm, LiP and Lac enzyme activities were the variables with more weight on the second component. P. sajor caju revealed to be the only species able to perform the biological treatment without promoting an increment in the toxicity of the effluent to the Vibrio fischeri, as it was assessed by the Microtox® assay. The opposite was recorded for the treatments with the other three species of fungus. EC50-5 min values ranging between 28 and 57% (effluent concentrations) were recorded even after 10 to 13 days of treatment with P. chrysosporium, R. oryzae or with T. versicolor.  相似文献   

14.
In this research, we investigated a chemical extraction process, under subcritical conditions, for arsenic (As)-contaminated soil in the vicinity of an abandoned smelting plant in South Korea. The total concentration of As in soil was 75.5 mg/kg, 68% of which was As(+ III). X-ray photoelectron spectroscopy analysis showed that the possible As(+ III)-bearing compounds in the soil were As2O3 and R-AsOOH. At 20 °C, 100 mM of NaOH could extract 26% of the As from the soil samples. In contrast, 100 mM of ethylenediaminetetraacetic acid (EDTA) and citric acid showed less than 10% extraction efficiency. However, as the temperature increased to 250 and 300 °C, extraction efficiencies increased to 75-91% and 94-103%, respectively, regardless of the extraction reagent used. Control experiments with subcritical water at 300 °C showed complete extraction of As from the soil. Arsenic species in the solution extracted at 300 °C indicated that subcritical water oxidation may be involved in the dissolution of As(+ III)-bearing minerals under given conditions. Our results suggest that subcritical water extraction/oxidation is a promising option for effective disposal of As-contaminated soil.  相似文献   

15.
Laboratory investigations were performed to estimate the potential mobility of arsenic (As) from a highly contaminated gold-mining soil under bio-oxidative aerobic conditions as a potential remediation process. The selected soil was sampled from a gold-mining site in the South of France. It contained 27700 mg kg(-1) total As, with only 0.01% present under water-soluble forms. The nature of the immobilization mechanisms was identified by using complementary physical and chemical techniques. As was found to be strongly associated to iron (oxy)hydroxide solid phase by adsorption and/or co-precipitation. Determination of iron (Fe) and As mobility as a function of pH showed that the release of As was related with the dissolution of Fe (oxy)hydroxide at very low pH values. Bioleaching experiments were conducted with the objective to enhance the mobilization of As from the source material via biological oxidation of elemental sulfur (S degree) into sulfuric acid by autotrophic exogenous or indigenous bacteria naturally located in the soil (i.e. Acidithiobacillus species). Tests conducted at 30 degrees C in shaker flasks supplemented with S degree resulted in very acidic (pH < 1) and oxidative conditions (oxidation/reduction potential (ORP) around +800 mV vs. NHE) and induced the extraction of up to 35% of As over 84 days of incubation. Under the experimental conditions of the study (batch experiments), As mobilization was strongly correlated to the dissolution of Fe solid phases. As mobilization was probably limited by the saturation of the liquid phase. Chimiolithotrophic exogenous population appeared to have a minor effect on As bioleaching. Endogenous populations were shown to rapidly develop their capacity to oxidize S degree and mobilize As from the mining soil in the form of arsenate when elemental S degree was supplemented. The use of microbial population adapted to high As concentrations reduced significantly the lag period to reach optimal pH/ORP conditions, and increased As extraction rate to a maximum of 41% within 70 days of incubation. However, As reprecipitation was subsequently observed, suggesting that the solution should be periodically replaced in order to optimize the process.  相似文献   

16.
The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.  相似文献   

17.
In Bangladesh and the neighboring state of West Bengal, India, over 100 million people are affected by widespread arsenic poisoning through drinking water drawn from underground sources containing arsenic at concentrations well above the permissible limit of 50 μg/L. The health effects caused by arsenic poisoning in this area is as catastrophic as any other natural calamity that occurred throughout the world in recent times. Since 1997, over 200 community level arsenic removal units have been installed in Indian subcontinent through collaboration between Bengal Engineering and Science University (BESU), India and Lehigh University, USA. Approximately 200,000 villagers collect arsenic-safe potable water from these units on a daily basis. The treated water is also safe for drinking with regard to its total dissolved solids, hardness, iron and manganese content. The units use regenerable arsenic-selective adsorbents. Regular maintenance and upkeep of the units is administered by the villagers through formation of villagers’ water committee. The villagers contribute towards the cost of operation through collection of a small water tariff. Upon exhaustion, the adsorbents are regenerated in a central facility by a few trained villagers. The process of regeneration reduces the volume of disposable arsenic-laden solids by nearly two orders of magnitude and allows for the reuse of the adsorbent material. Finally, the arsenic-laden solids are contained on well-aerated coarse sand filters with minimum arsenic leaching. This disposal technique is scientifically more appropriate than dumping arsenic-loaded adsorbents in the reducing environment of landfills as currently practiced in developed countries including the United States. The design of the units underwent several modifications over last ten years to enhance the efficiency in terms of arsenic removal, ease of maintenance and ecologically safe containment and disposal of treatment residuals. The continued safe operation of these units has amply demonstrated that use of regenerable arsenic-selective adsorbents is quite viable in remote locations. The technology and associated socio-economic management of the units have matured over the years, generating promise for rapid replication in other severely arsenic-affected countries in Southeast Asia.  相似文献   

18.
Kang M  Chen H  Sato Y  Kamei T  Magara Y 《Water research》2003,37(19):4599-4604
Detection of various types of contaminants in water treatment plant by sophisticated analytical methods such as inductively coupled plasma/mass spectrometry and gas chromatography/mass spectrometry requires hours to days to provide the results. Because naturally occurring ultraviolet (UV) active compounds are commonly present in almost all source waters and can be rapidly monitored by UV absorbance at 260 nm (E260), the extent of correlation between the removal efficiency of E260 and the removal efficiency of As(V) with minimum soluble residual Al by coagulation process was investigated. Percentage removals for E260 were well correlated to those of As(V). When sufficient alum or polyaluminum chloride (PACl) was added for 60-65% removal of E260, 90-95% removal of As(V) was achieved with minimum soluble residual Al regardless of the initial level of turbidity, E260, and As(V). As E260 analysis is precisely available even by an unskilled plant operator in a few minutes, E260 removal efficiency appears to be the promising economical indicator for monitoring the effectiveness of the coagulation process for the removal of contaminants with minimum residual Al.  相似文献   

19.
Zeng L 《Water research》2003,37(18):4351-4358
A method for preparing iron(III)-based binary oxide adsorbents in a granulated form for arsenic removal was studied. The key step in the method was the simultaneous generation of hydrous ferric oxide (FeOOH) sol and silica sol in situ in one reactor. This eventually led to the formation of Fe-Si complexes. The addition of silica enhanced the granulated adsorbent strength but reduced the arsenic adsorption capacity. An optimum Si/Fe molar ratio in the balance of adsorbent strength and arsenic adsorption capacity was found to be approximately 0.33. The effects of aging time, drying temperature and process pH on adsorbents were also evaluated in the study. X-ray diffraction analysis confirmed that the iron(III) oxide in the Fe-Si binary oxide adsorbents was amorphous, largely due to the retardation of the iron oxide crystallization by the presence of silicate species. The surface area of the Fe-Si adsorbents and the particle size of Fe-Si complexed suspensions were determined as well. The batch strength testing procedure introduced in this study can provide a simple and quick evaluation of granulate strength in a wet status. Generally, this developed method can prepare granulated Fe-Si binary oxide adsorbents for column adsorption of arsenic from water.  相似文献   

20.
土壤污染现状分析及治理对策研究   总被引:4,自引:0,他引:4  
王秉莲  李俊杰 《山西建筑》2010,36(20):354-355
结合国内外的研究结果,对我国城市与农村两种土壤污染现状及其污染原因进行了分析比较,并总结出城市、农业土壤污染的治理对策,从而为土壤污染检测奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号