首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implementation of a geodata-based probabilistic pesticide exposure assessment for surface waters in Germany offers the opportunity to base the exposure estimation on more differentiated assumptions including detailed landscape characteristics. Since these characteristics can only be estimated using field surveys, water body width and depth, hydrology, riparian buffer strip width, ground vegetation cover, existence of concentrated flow paths, and riparian vegetation were characterised at 104 water body segments in the vineyard region Palatinate (south-west Germany).Water body segments classified as permanent (n = 43) had median values of water body width and depth of 0.9 m and 0.06 m, respectively, and the determined median width:depth ratio was 15. Thus, the deterministic water body model (width = 1 m; depth = 0.3 m) assumed in regulatory exposure assessment seems unsuitable for small water bodies in the study area. Only 25% of investigated buffer strips had a dense vegetation cover (> 70%) and allow a laminar sheet flow as required to include them as an effective pesticide runoff reduction landscape characteristic. At 77 buffer strips, bordering field paths and erosion rills leading into the water body were present, concentrating pesticide runoff and consequently decreasing buffer strip efficiency. The vegetation type shrubbery (height > 1.5 m) was present at 57 (29%) investigated riparian buffer strips. According to their median optical vegetation density of 75%, shrubberies may provide a spray drift reduction of 72 ± 29%.Implementing detailed knowledge in an overall assessment revealed that exposure via drift might be 2.4 and via runoff up to 1.6 fold higher than assumed by the deterministic approach. Furthermore, considering vegetated buffer strips only by their width leads to an underestimation of exposure by a factor of as much as four. Our data highlight that the deterministic model assumptions neither represent worst-case nor median values and therefore cannot simply be adopted in a probabilistic approach.  相似文献   

2.
In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO2 photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80 mg L−1) and photocatalyst loadings (0.2-1.6 g TiO2 L−1) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80 mg L−1) and at 1.6 g TiO2 L−1 photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.  相似文献   

3.
We investigated if the chronic zinc biotic ligand model (BLM) developed earlier for the arthropod Daphnia magna could be extrapolated to predict chronic ecotoxicity of zinc as a function of water chemistry to two species from other phyla, i.e. the mollusc Lymnaea stagnalis and the rotifer Brachionus calyciflorus. We chronically exposed these two species to zinc in six natural surface waters. These water covered a wide range of pH (6.8-8.3), dissolved organic carbon (1.2-12.7 mg/L) and Ca (8.8-118 mg/L). Across all waters tested, the 28d-EC10s (200-1629 μg Zn/L) and EC50s (382-2026 μg Zn/L) for L. stagnalis spanned a 8.1-fold and 5.3-fold range, respectively. The 2d-EC10s (142-550 μg Zn/L) and 2d-EC50s (195-1104 μg Zn/L) for B. calyciflorus spanned a 3.9-fold and 5.7-fold range, respectively. The data indicated that higher pH and higher concentrations of Ca and DOC were generally associated with lower toxicity (higher ECx values). Furthermore, the chronic Zn BLM for D. magna, when calibrated only to reflect the intrinsic sensitivity of L. stagnalis and B. calyciflorus, was able to predict all ECx values with a less than 1.6-fold error, which demonstrates that the chronic D. magna Zn BLM can be extrapolated to other invertebrate phyla. This lends further support to the use of the chronic Zn BLM to account for bioavailability of zinc in aquatic risk assessment and the derivation of environmental quality standards.  相似文献   

4.
Size is one of important factors determining titanium dioxide nanoparticle (TiO2 NP) toxicity since penetration is eased with decreasing particle size and bioavailability is increased. The effect of particle size on oxidative stress against titanium dioxide nanoparticle (TiO2 NP) exposure to Daphnia magna was investigated with both acute and chronic toxicity tests. Experiments on biochemical responses, repeatedly performed after size fractionation of the NPs using filtration, focused on the activities of four antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione-S-transferase (GST). In the chronic bioassay, the mortality was significantly increased at TiO2 NP concentrations of 5 and 10 mg/L; however, no reduction of the reproduction ability was observed. Biochemical measurements showed that TiO2 NP exposure significantly increased the antioxidant enzyme activities in D. magna. CAT, GPX and GST, but not SOD, showed a concentration-dependent increase. In terms of size fraction, particles ranging from 400 to 800 nm exhibited an increase of antioxidant enzyme activities in GST and GPX. These biochemical level observations suggested that TiO2 NP toxicity was mediated by reactive oxygen species (ROS) generation via oxidative stress in D. magna. The increased mortality at the concentration of 5 mg/L in the chronic bioassay was attributed to accumulated TiO2 NPs in the intestine of D. magna, which might induce effects such as oxidative stress relating to the induction of antioxidant enzymes.  相似文献   

5.
Environmental risk assessment of chemicals toxicity requires the use of costly and labor-intensive chronic data and short-term tests provide additional information. Energy budget is used by the animals for their growth, reproduction, and metabolism and it is reduced in case of toxic stress. Tetradifon acaricide is frequently used in the European Mediterranean region and it is implicated in aquatic environmental pollution. Previous studies showed that the EC50-24 h of tetradifon on Daphnia magna was 8.92 mg/L. Based on that, D. magna were exposed to sublethal tetradifon concentrations of 0.10, 0.18, 0.22 and 0.44 mg/L for five days in order to investigate their effect on intermediate metabolism. Caloric content was determined as biomarker of tetradifon toxicity. Results were analyzed using one-way analysis of variance (ANOVA) and Duncan's significant difference test was used to find differences between groups (α was set at p = 0.05). Daphnids energy content decreased as tetradifon concentration increased. At 120-h caloric content was depleted > 51% at pesticide concentrations of 0.18 mg/L and higher. In order to determine a possible link between the 5-d test and the 21-d chronic test, animals under short-term test were exposed to the same pesticide concentrations known to cause adverse effects on reproduction, growth and survival. Results from the present study indicated a good correlation between the proposed 5-day test and daphnid energy budget. Comparison between both, caloric content results and the chronic effect values obtained using life-table studies, suggested a good fit between them. These studies can be used as earlier, predictive and useful tests with comparable results to the classic chronic ones. Our results indicate that caution must be done about the use of tetradifon in the aquatic environment.  相似文献   

6.
First immature instar Daphnia pulex Leydig acclimated at 5, 10, 15, 20, 25 and 30°C, and Daphnia magna Straus acclimated at 10, 15, 20, 25 and 30°C, were instantaneously immersed at the specified temperatures which differed from acclimation temperatures by 10°C or more. Observations for mortality were made at regular intervals for 48 h or longer until at least one molting had occurred. Organisms acclimated at the same temperatures were also instantaneously immersed at 35°C, an ultimately lethal temperature, and followed to 95% mortality. Daphnia pulex acclimated at 20°C were stepped over varying rates of temperature change to 35°C and observed for mortality over a 48-h period. Thirty first immature instar organisms were used in each test, and tests were carried out in temperature controlled water baths and incubators. Filtered pond water was used for culture and testing.Both species survived instantaneous temperature changes over the entire normal tolerance ranges tested. Animals succumbed more rapidly upon instantaneous immersion at 35°C as the temperature at which they were acclimated decreased, with D. magna succumbing more rapidly than D. pulex from all acclimation temperatures. Daphnia pulex acclimated at 20°C and stepped to 35°C at varying rates of temperature change exhibited a decreasing 48-h mortality percentage as rates decreased from 6°C h−1 to 1.33°C h−1.Shortcomings in methodologies of previous thermal tolerance studies on zooplankton were discussed, and recommendations were made as to how these methods can be improved.  相似文献   

7.
Monitoring of aerosols is typically performed over 3 h to diurnal time scales for outdoor concentration levels and 15 min to 8 h scales indoors. At these scales, concentration is assumed to be well mixed with little spatio-temporal variability around the sampler. Less attention has been given to the potential for acute exposure to contaminants during the initial minutes after a point-source release, where point-wise concentrations may greatly exceed the well-mixed conditions. Here, we seek to demonstrate that the commonly used well-mixed assumption is flawed in the first minutes after a contaminant is released because point-wise concentration levels are initially highly non-uniform and are influenced by turbulent structures caused by the presence of obstacles in the room. This assumption was examined by releasing 3 μm aerosols in a test room with HEPA filter ventilation and by varying controlled conditions of room furnishings (furnished vs. unfurnished) and contaminant release locations (at the inlet vent or under a desk). For each experiment, aerosol concentrations were measured simultaneously at seven locations by nephelometry. Complementary computational fluid dynamics simulations were performed to lend confidence to the experiments and to provide detailed pictures of the velocity and particle concentration profiles. The experimental and numerical results corroborated the hypothesis. For both release locations in the furnished room, a completely well-mixed condition did not occur 600 s after the release, and aerosol dispersion was dictated by the turbulent airflow pattern. For the empty room, there was significantly less spatial variability in the point-wise measured concentrations after 300 s than for the furnished room. This information may aid in evaluating the potential for occupant exposure to aerosolized hazardous substances and in supporting optimization of detector placement.  相似文献   

8.
The application of sonolysis (US) for remediation of wastewater is an area of increasing interest. The aim of this study was to evaluate the ultrasonic (US) process on the degradation of pharmaceuticals (diclofenac (DCF), amoxicillin (AMX), carbamazepine (CBZ)) in single solutions and also in three mixtures spiked in urban wastewater effluent. Several operating conditions, such as power density (25-100 W L−1), initial substrate concentrations (2.5-10 mg L−1), initial solution pH (3-11), and air sparging were varied for the evaluation and understanding of the process. The degradation (as assessed by measuring UV absorbance), the generation of hydroxyl radicals (as assessed measuring H2O2 concentration), the mineralization (in terms of TOC and COD removal), and the aerobic biodegradability (as assessed by the BOD5/COD ratio) were monitored during sonication. Ecotoxicity to Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum before and after treatment was also evaluated. It was found that the pharmaceuticals conversion is enhanced at increased applied power densities, acidic conditions and in the presence of dissolved air. The reaction rate increases with increasing initial concentration of single pharmaceuticals but it remains constant in the mixtures, indicating different kinetic regimes (i.e. first and zero order respectively). Mineralization is a slow process as reaction by-products are more stable than pharmaceuticals to total oxidation; nonetheless, they are also more readily biodegradable. The toxicity of the wastewater samples before and after contamination with pharmaceuticals both in mixtures and in single substance-containing solutions was observed more severely on P. subcapitata; a fact that raises concerns in regards to the discharge of such effluents. D. magna displayed less sensitivity compared to P. subcapitata because it belongs in a lower taxonomic species than D. magna. The germination index of L. sativum in the presence of the drugs' mixture was stimulated instead of inducing any toxicity effect and this might be attributed to the fact the sample, laden with very low drug concentrations was able to act as a provider of additional nutrient elements.  相似文献   

9.
The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (< 6.5) at most sites for an As-OH ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation events.  相似文献   

10.
Hand-to-mouth activity, especially in children, is a potentially significant pathway of exposure to soil contaminants. Hand-mouthing behavior is of particular concern in areas impacted by mining, smelting, and quarrying activities as these activities may lead to elevated levels of heavy metals in soil. In order to estimate potential exposures to contaminated geologic media attributable to hand-to-mouth contact, it is useful to characterize adherence of those media to skin, as contaminant concentrations in adhered media may differ greatly from unfractionated, whole media concentrations. Such an investigation has been undertaken to aid estimation of exposures to arsenic, cadmium, lead, and zinc in nine different geologic media collected in the Pacific Northwest region of the United States. After establishing the particle size distribution of each medium (fractions < 63 μm, 63-150 μm, 150-250 μm, and 250 μm-2 mm were determined) and target elemental concentrations within each particle size fraction, an active handling protocol involving six volunteers was conducted. Wet media always adhered to a greater extent than dry media and adhered media generally had higher elemental concentrations than bulk media. Regression analyses suggest smaller particle fractions may have higher elemental concentrations. Results of application of a maximum likelihood estimation technique generally indicate that handling of dry media leads to preferential adherence of smaller particle sizes, while handling of wet media does not. Because adhered material can differ greatly in particle size distribution from that found in bulk material, use of bulk concentrations in exposure calculations may lead to poor estimation of actual exposures. Since lead has historically been a metal of particular concern, EPA's Integrated Exposure Uptake Biokinetic (IEUBK) Model was used to examine the potential consequences of evaluating ingestion of the selected media assuming concentrations in adhering versus bulk media.  相似文献   

11.
Entry of contaminants, such as metals and non-metals, into rainwater harvesting systems can occur directly from rainfall with contributions from collection surfaces, accumulated debris and leachate from storage systems, pipes and taps. Ten rainwater harvesting systems on the east coast of Australia were selected for sampling of roof runoff, storage systems and tap outlets to investigate the variations in rainwater composition as it moved throughout the system, and to identify potential points of contribution to elemental loads. A total of 26 elements were screened at each site. Iron was the only element which was present in significantly higher concentrations in roof runoff samples compared with tank tap samples (P < 0.05). At one case study site, results suggested that piping and tap material can contribute to contaminant loads of harvested rainwater. Increased loads of copper were observed in hot tap samples supplied by the rainwater harvesting system via copper piping and a storage hot water system (P < 0.05). Similarly, zinc, lead, arsenic, strontium and molybdenum were significantly elevated in samples collected from a polyvinyl chloride pipe sampling point that does not supply household uses, compared with corresponding roof runoff samples (P < 0.05). Elemental composition was also found to vary significantly between the tank tap and an internal cold tap at one of the sites investigated, with several elements fluctuating significantly between the two outlets of interest at this site, including potassium, zinc, manganese, barium, copper, vanadium, chromium and arsenic.These results highlighted the variability in the elemental composition of collected rainwater between different study sites and between different sampling points. Atmospheric deposition was not a major contributor to the rainwater contaminant load at the sites tested. Piping materials, however, were shown to contribute significantly to the total elemental load at some locations.  相似文献   

12.
This research focuses on mercury (Hg) mobilization in stormwater runoff from an urban roadway. The objectives were to determine: how the transport of surface-derived Hg changes during an event hydrograph; the influence of antecedent dry days on the runoff Hg load; the relationship between total suspended sediments (TSS) and Hg transport, and; the fate of new Hg input in rain and its relative importance to the runoff Hg load. Simulated rain events were used to control variables to elucidate transport processes and a Hg stable isotope was used to trace the fate of Hg inputs in rain. The results showed that Hg concentrations were highest at the beginning of the hydrograph and were predominately particulate bound (HgP). On average, almost 50% of the total Hg load was transported during the first minutes of runoff, underscoring the importance of the initial runoff on load calculations. Hg accumulated on the road surface during dry periods resulting in the Hg runoff load increasing with antecedent dry days. The Hg concentrations in runoff were significantly correlated with TSS concentrations (mean r2 = 0.94 ± 0.09). The results from the isotope experiments showed that the new Hg inputs quickly become associated with the surface particles and that the majority of Hg in runoff is derived from non-event surface-derived sources.  相似文献   

13.
In this work, the photocatalytic degradation of the antibiotic sulfamethoxazole (SMX) by solar photo-Fenton at pilot plant scale was evaluated in distilled water (DW) and in seawater (SW). Degradation and mineralization of SMX were strongly hindered in SW compared to DW. The influence of H2O2 and iron concentration on the efficiency of the photocatalytic process was evaluated. An increase in iron concentration from 2.6 to 10.4 mg L−1 showed only a slight improvement in SMX degradation and mineralization. However, an increase in H2O2 concentration up to 120 mg L−1 during photo-Fenton in DW decreased SMX solution toxicity from 85% to 20%, according to results of Daphnia magna bioassays. The same behaviour was not observed after photo-Fenton treatment in SW. Despite 45% mineralization in SW, toxicity increased from 16% to 86% as shown by Vibrio fischeri bioassays, which suggests that the intermediates generated in SW are different from those in DW. A SMX degradation pathway during the photo-Fenton treatment in DW is proposed.  相似文献   

14.
Degradation kinetics and mineralization of an urban wastewater treatment plant effluent contaminated with a mixture of pharmaceutical compounds composed of amoxicillin (10 mg L−1), carbamazepine (5 mg L−1) and diclofenac (2.5 mg L−1) by TiO2 photocatalysis were investigated. The photocatalytic effect was investigated using both spiked distilled water and actual wastewater solutions. The process efficiency was evaluated through UV absorbance and TOC measurements. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Lepidium sativum) was performed to evaluate the potential toxicity of the oxidation intermediates. A pseudo-first order kinetic model was found to fit well the experimental data. The mineralization rate (TOC) of the wastewater contaminated with the pharmaceuticals was found to be really slow (t1/2 = 86.6 min) compared to that of the same pharmaceuticals spiked in distilled water (t1/2 = 46.5 min). The results from the toxicity tests of single pharmaceuticals, their mixture and the wastewater matrix spiked with the pharmaceuticals displayed a general accordance between the responses of the freshwater aquatic species (P. subscapitata > D. magna). In general the photocatalytic treatment did not completely reduce the toxicity under the investigated conditions (maximum catalyst loading and irradiation time 0.8 g TiO2 L−1 and 120 min respectively).  相似文献   

15.
The influence of iron species on amoxicillin (AMX) degradation, intermediate products generated and toxicity during the photo-Fenton process using a solar simulator were evaluated in this work. The AMX degradation was favored in the presence of the potassium ferrioxalate complex (FeOx) when compared to FeSO4. Total oxidation of AMX in the presence of FeOx was obtained after 5 min, while 15 min were necessary using FeSO4. The results obtained with Daphnia magna biossays showed that the toxicity decreased from 65 to 5% after 90 min of irradiation in the presence of FeSO4. However, it increased again to a maximum of 100% after 150 min, what indicates the generation of more toxic intermediates than AMX, reaching 45% after 240 min. However, using FeOx, the inhibition of mobility varied between 100 and 70% during treatment, probably due to the presence of oxalate, which is toxic to the neonates. After 240 min, between 73 and 81% TOC removal was observed. Different pathways of AMX degradation were suggested including the opening of the four-membered β-lactamic ring and further oxidations of the methyl group to aldehyde and/or hydroxylation of the benzoic ring, generating other intermediates after bound cleavage between different atoms and further oxidation to carboxylates such acetate, oxalate and propionate, besides the generation of nitrate and ammonium.  相似文献   

16.
The conversion of the antibiotic ofloxacin and the β-blocker atenolol by means of TiO2 photocatalysis was investigated. Irradiation was provided by a UVA lamp at 3.37 × 10−6 einstein/s photon flux, while emphasis was given on the effect of catalyst type and loading (50-1500 mg/L), initial substrate concentration (5-20 mg/L), initial pH (3-10) and the effect of H2O2 (0.07-1.4 mM) as an additional oxidant on substrate conversion and mineralization in various matrices (i.e. pure water, groundwater and treated municipal effluent). Conversion was assessed measuring sample absorbance at 288 and 224 nm for ofloxacin and atenolol, respectively, while mineralization measuring the dissolved organic carbon. Degussa P25 TiO2 was found to be more active than other TiO2 samples for either substrate degradation, with ofloxacin being more reactive than atenolol. Conversion generally increased with increasing catalyst loading, decreasing initial substrate concentration and adding H2O2, while the effect of solution pH was substrate-specific. Reaction rates, following a Langmuir-Hinshelwood kinetic expression, were maximized at a catalyst to substrate concentration ratio (w/w) of 50 and 15 for ofloxacin and atenolol, respectively, while higher ratios led to reduced efficiency. Likewise, high concentrations of H2O2 had an adverse effect on reaction, presumably due to excessive oxidant scavenging radicals and other reactive species. The ecotoxicity of ofloxacin and atenolol to freshwater species Daphnia magna was found to increase with increasing substrate concentration (1-10 mg/L) and exposure time (24-48 h), with atenolol being more toxic than ofloxacin. Photocatalytic treatment eliminated nearly completely toxicity and this was more pronounced for atenolol.  相似文献   

17.
The European Union regulation on Registration, Evaluation, Authorization and Restriction of Chemical substances (REACH) (EC, 2006) requires the characterization of the chronic toxicity of many chemicals in the aquatic environment, including molybdate (MoO42−). Our literature review on the ecotoxicity of molybdate revealed that a limited amount of reliable chronic no observed effect concentrations (NOECs) for the derivation of a predicted no-effect concentration (PNEC) existed. This paper presents the results of additional ecotoxicity experiments that were conducted in order to fulfill the requirements for the derivation of a PNEC by means of the scientifically most robust species sensitivity distribution (SSD) approach (also called the statistical extrapolation approach). Ten test species were chronically exposed to molybdate (added as sodium molybdate dihydrate, Na2MoO4·2H2O) according to internationally accepted standard testing guidelines or equivalent. The 10% effective concentrations (EC10, expressed as measured dissolved molybdenum) for the most sensitive endpoint per species were 62.8-105.6 (mg Mo)/L for Daphnia magna (21 day-reproduction), 78.2 (mg Mo)/L for Ceriodaphnia dubia (7 day-reproduction), 61.2-366.2 (mg Mo)/L for the green alga Pseudokirchneriella subcapitata (72 h-growth rate), 193.6 (mg Mo)/L for the rotifer Brachionus calyciflorus (48 h-population growth rate), 121.4 (mg Mo)/L for the midge Chironomus riparius (14 day-growth), 211.3 (mg Mo)/L for the snail Lymnaea stagnalis (28 day-growth rate), 115.9 (mg Mo)/L for the frog Xenopus laevis (4 day-larval development), 241.5 (mg Mo)/L for the higher plant Lemna minor (7 day-growth rate), 39.3 (mg Mo)/L for the fathead minnow Pimephales promelas (34 day-dry weight/biomass), and 43.2 (mg Mo)/L for the rainbow trout Oncorhynchus mykiss (78 day-biomass). These effect concentrations are in line with the few reliable data currently available in the open literature. The data presented in this study can serve as a basis for the derivation of a PNECaquatic that can be used for national and international regulatory purposes and for setting water quality criteria. Using all reliable data that are currently available, a HC5,50% (median hazardous concentration affecting 5% of the species) of 38.2 (mg Mo)/L was derived with the statistical extrapolation approach.  相似文献   

18.
Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-(∑-)contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, ∑ DDT (and p,p′-DDE, p,p′-DDD, p,p′-DDT) decreased (−8.4%/year); α-hexachlorocyclohexane (α-HCH) decreased (−11%/year); β-HCH increased (+ 8.3%/year); and ∑ PCB and ∑ chlordane (CHL), both contaminants at highest concentrations in all years (> 1 ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (−1.6%/year to −6.3%/year), whereas CB153 levels tended to increase (+ 3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). ∑ chlorobenzene, octachlorostyrene, ∑ mirex, ∑ MeSO2-PCB and dieldrin did not significantly change. Increasing ∑ PBDE levels (+ 13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(α)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or “weathering” of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year. DDT patterns were not associated with any explanatory variables, possibly related to local DDT sources. Contaminant pattern trends may be useful in distinguishing the possible role of ecological/diet changes on contaminant burdens from expected dynamics due to atmospheric sources and weathering.  相似文献   

19.
Toxic effect concentrations of insecticides are generally determined using the technical grade or pure active ingredient. Commercial insecticide formulations, however, contain a significant proportion (> 90%) of so-called inert ingredients, which may alter the toxicity of the active ingredient(s). This study compares the sublethal toxicity of two insecticides, the pyrethroid bifenthrin, and the phenylpyrazole fipronil, to their commercial formulations, Talstar® and Termidor®. Both insecticides are used for landscape treatment and structural pest control, and can be transported into surface water bodies via stormwater and irrigation runoff. We used larval fathead minnow (Pimephales promelas), to determine effects on growth and swimming performance after short-term (24 h) exposure to sublethal concentrations of pure insecticides and the respective formulations. Significantly enhanced 7 d growth was observed at 10% of the 24 h LC10 (53 μg L1) fipronil. Swimming performance was significantly impaired at 20% of the 24 h LC10 (0.14 μg L1) of bifenthrin and 10% of the 24 h LC10 of Talstar® (0.03 μg L1). Fipronil and Termidor® led to a significant impairment of swimming performance at 142 μg L1 and 148 μg L1 respectively, with more pronounced effects for the formulation. Our data shows that based on dissolved concentrations both formulations were more toxic than the pure active ingredients, suggesting that increased toxicity due to inert ingredients should be considered in risk assessments and regulation of insecticides.  相似文献   

20.
Life Cycle Assessment (LCA) is often used for the environmental evaluation of agri-food systems due to its holistic perspective. In particular, the assessment of milk production at farm level requires the evaluation of multiple dairy farms to guarantee the representativeness of the study when a regional perspective is adopted. This article shows the joint implementation of LCA and Data Envelopment Analysis (DEA) in order to avoid the formulation of an average farm, therefore preventing standard deviations associated with the use of average inventory data while attaining the characterization and benchmarking of the operational and environmental performance of dairy farms. Within this framework, 72 farms located in Galicia (NW Spain) were subject to an LCA + DEA study which led to identify those farms with an efficient operation. Furthermore, target input consumption levels were benchmarked for each inefficient farm, and the corresponding target environmental impacts were calculated so that eco-efficiency criteria were verified. Thus, average reductions of up to 38% were found for input consumption levels, leading to impact reductions above 20% for every environmental impact category. Finally, the economic savings arising from efficient farming practices were also estimated. Economic savings of up to 0.13 € per liter of raw milk were calculated, which means extra profits of up to 40% of the final raw milk price.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号