首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Polybrominated diphenyl ethers (PBDEs) containing two to 10 bromines are ubiquitous in the Arctic, in both abiotic and biotic samples. Hexabromocyclododecane (HBCD) is also ubiquitous in the Arctic, with the γ-HBCD isomer predominating in air, the α-HBCD isomer predominating in biota and similar concentrations of α-, β- and γ-HBCD found in marine sediments. Other brominated flame retardants (BFRs) found in some Arctic samples are polybrominated biphenyls (PBBs), tetrabromobisphenol A (TBBPA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HxBBz), pentabromoethylbenzene (PBEB), pentabromotoluene (PBT), and 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH). Temporal trends of tetra- to heptaBDEs and HBCD show increasing concentrations or a tendency to levelling off depending on the matrix (air, sediment, biota) and location, but no uniform picture for the Arctic emerges. BDE-209 concentrations are increasing in air. PBDEs and HBCD spatial trends in seabirds and marine mammals are similar to those seen previously for polychlorinated biphenyls (PCBs), with highest concentrations found in organisms from East Greenland and Svalbard. These trends indicate western Europe and eastern North America as important source regions of these compounds via long range atmospheric transport and ocean currents. Latitudinal trends showed lower concentrations and fluxes of PBDEs at higher latitudes. The tetra-hexaBDEs and α-HBCD biomagnify in Arctic food webs. Results for BDE-209 are more conflicting, showing either only low or no biomagnification potential. PBDE and HBCD concentrations are lower in terrestrial organisms and higher in marine top predators such as some killer whale populations in Alaska and glaucous gulls from the Barents Sea area. Higher concentrations are seen near populated areas indicating local sources. Findings of BTBPE, HxBBz, PBEB, PBT and TBECH in seabirds and/or marine mammals indicate that these compounds reach the Arctic, most probably by long range atmospheric transport and accumulate in higher trophic level organisms and that increasing use as PBDE replacements will lead to increasing concentrations.  相似文献   

2.
The non-occupational exposure to brominated flame retardants, and other persistent organic pollutants (POPs) was studied by collecting human breast milk samples from mothers residing in Thohoyandou area, a rural district in the Limpopo Province, northern part of South Africa (SA). Of all collected samples to be analysed (n = 28), those with large enough milk volumes, (n = 14) were quantified for polybrominated diphenyl ethers (PBDEs) (9 congeners: BDE-28, 47, 66, 99, 100, 138, 153, 154, and 183) and hexabromocyclododecane (HBCD) on a GC equipped with dual capillary columns and dual electron-capture detectors (ECD). The levels of PBDE congeners (median sumBDE 1.3 ng/g of lipids) and of HBCD were not far from levels generally found in European studies, and this study may be the first report on the presence of PBDEs and HBCD in SA breast milk. On a congener basis, the finding of comparably high BDE-183 levels suggests a specific PBDE usage, or contamination situation in SA. Apart from BFRs, the high DDT levels found in the breast milk from this area (median and maximum sumDDT levels of about 4 600 and over 20 000 ng/g of lipids, respectively; n = 28) have earlier been reported. In addition, other POPs (PCBs, HCB and HCHs) were found in SA breast milk, at relatively low levels. To conclude, measurable levels of PBDEs and HBCD, and a specific BDE congener pattern, were found in breast milk from the Limpopo province, SA. A number of other POPs, including DDTs in high levels, were also present.  相似文献   

3.
Polychlorinated biphenyls (PCBs), chlorinated pesticides (i.e., dichlorodiphenyltrichloroethane (DDT) and its metabolites, chlordanes (CHLs), dieldrin, hexachlorobenzene (HCB), and mirex), polybrominated diphenyl ethers (PBDEs), perfluorinated chemicals (PFCs), and polyaromatic hydrocarbons (PAHs) were measured in blubber biopsy samples collected from 139 wild bottlenose dolphins (Tursiops truncatus) during 2003-2005 in Charleston (CHS), SC and the Indian River Lagoon (IRL), FL. Dolphins accumulated a similar suite of contaminants with ∑ PCB dominating (CHS 64%, IRL 72%), followed by ∑ DDT (CHS 20%, IRL 17%), ∑ CHLs (CHS 7%; IRL 7%), ∑ PBDE (CHS 4%, IRL 2%), PAH at 2%, and dieldrin, PFCs and mirex each 1% or less. Together ∑ PCB and ∑ DDT concentrations contributed ∼ 87% of the total POCs measured in blubber of adult males. ∑ PCBs in adult male dolphins exceed the established PCB threshold of 17 mg/kg by a 5-fold order of magnitude with a 15-fold increase for many animals; 88% of the dolphins exceed this threshold. For male dolphins, CHS (93,980 ng/g lipid) had a higher ∑ PCBs geomean compared to the IRL (79,752 ng/g lipid) although not statistically different. In adult males, the PBDE geometric mean concentration was significantly higher in CHS (5920 ng/g lipid) than the IRL (1487 ng/g). Blubber ∑ PFCs concentrations were significantly higher in CHS dolphins. In addition to differences in concentration of PCB congeners, ∑ PBDE, TEQ, ∑ CHLs, mirex, dieldrin, and the ratios ∑ DDE/∑DDT and trans-nonachlor/cis-nonachlor were the most informative for discriminating contaminant loads in these two dolphin populations. Collectively, the current ∑ PCB, ∑ DDT, and ∑ PBDEs blubber concentrations found in CHS dolphins are among the highest reported values in marine mammals. Both dolphin populations, particularly those in CHS, carry a suite of organic chemicals at or above the level where adverse effects have been reported in wildlife, humans, and laboratory animals warranting further examination of the potential adverse effects of these exposures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号