首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang X  Zhao Z  Nordquist T  Norback D 《Indoor air》2011,21(6):462-471
There are few incidence studies on sick building syndrome (SBS). We studied two-year change of SBS in Chinese pupils in relation to parental asthma/allergy (heredity), own atopy, classroom temperature, relative humidity (RH), absolute humidity (AH), crowdedness, CO?, NO?, and SO?. A total of 1993 participated at baseline, and 1143 stayed in the same classrooms after two years. The prevalence of mucosal and general symptoms was 33% and 28% at baseline and increased during follow-up (P < 0.001). Twenty-seven percent reported at least one symptom improved when away from school. Heredity and own atopy were predictors of SBS at baseline and incidence of SBS. At baseline, SO? was associated with general symptoms (OR=1.10 per 100 μg/m3), mucosal symptoms (OR=1.12 per 100 μg/m3), and skin symptoms (OR=1.16 per 100 μg/m3). NO? was associated with mucosal symptoms (OR=1.13 per 10 μg/m3), and symptoms improved when away from school (OR=1.13 per 10 μg/m3). Temperature, RH, AH, and CO? were negatively associated with prevalence of SBS. Incidence or remission of SBS was not related to any exposure, except a negative association between SO? and new skin symptoms. In conclusion, heredity and atopy are related to incidence and prevalence of SBS, but the role of the measured exposures for SBS is more unclear. PRACTICAL IMPLICATIONS: We found high levels of CO? indicating inadequate ventilation and high levels of SO? and NO?, both indoors and outdoors. All schools had natural ventilation, only. Relying on window opening as a tool for ventilation in China is difficult because increased ventilation will decrease the level of CO? but increase the level of NO? and SO? indoors. Prevalence studies of sick building syndrome (SBS) might not be conclusive for causal relationships, and more longitudinal studies on SBS are needed both in China and other parts of the world. The concept of mechanical ventilation and air filtration should be introduced in the schools, and when planning new schools, locations close to heavily trafficked roads should be avoided.  相似文献   

2.
We reviewed the literature on Indoor Air Quality (IAQ), ventilation, and building-related health problems in schools and identified commonly reported building-related health symptoms involving schools until 1999. We collected existing data on ventilation rates, carbon dioxide (CO2) concentrations and symptom-relevant indoor air contaminants, and evaluated information on causal relationships between pollutant exposures and health symptoms. Reported ventilation and CO2 data strongly indicate that ventilation is inadequate in many classrooms, possibly leading to health symptoms. Adequate ventilation should be a major focus of design or remediation efforts. Total volatile organic compounds, formaldehyde (HCHO) and microbiological contaminants are reported. Low HCHO concentrations were unlikely to cause acute irritant symptoms (<0.05 ppm), but possibly increased risks for allergen sensitivities, chronic irritation, and cancer. Reported microbiological contaminants included allergens in deposited dust, fungi, and bacteria. Levels of specific allergens were sufficient to cause symptoms in allergic occupants. Measurements of airborne bacteria and airborne and surface fungal spores were reported in schoolrooms. Asthma and 'sick building syndrome' symptoms are commonly reported. The few studies investigating causal relationships between health symptoms and exposures to specific pollutants suggest that such symptoms in schools are related to exposures to volatile organic compounds (VOCs), molds and microbial VOCs, and allergens.  相似文献   

3.
This study was performed to explore possible environmental risk factors, including indoor chemicals, mold, and dust mite allergens, which could cause sick building syndrome (SBS)-type symptoms in new houses. The study was conducted in 2004 and 2005 and the final study population consisted of 86 men and 84 women residing in Okayama, Japan. The indoor concentrations of indoor aldehydes, volatile organic compounds, airborne fungi, and dust mite allergens in their living rooms were measured and the longitudinal changes in two consecutive years were calculated. A standardized questionnaire was used concomitantly to gather information on frequency of SBS-type symptoms and lifestyle habits. About 10% of the subjects suffered from SBS in the both years. Crude analyses indicated tendencies for aldehyde levels to increase frequently and markedly in the newly diseased and ongoing SBS groups. Among the chemical factors and molds examined, increases in benzene and in Aspergillus contributed to the occurrence of SBS in the logistic regression model. Indoor chemicals were the main contributors to subjective symptoms associated with SBS. A preventive strategy designed to lower exposure to indoor chemicals may be able to counter the occurrence of SBS.  相似文献   

4.
We examined the associations between biomarkers of allergy and inflammation, indoor environment in dwellings, and incidence and remission of symptoms included in the sick building syndrome (SBS) and changes in the home environment of 452 adults who were followed from 1992 to 2002 within the Uppsala part of the European Community Respiratory Health Survey (ECRHS). The 10-year incidence (onset) of general, mucosal, and dermal symptoms was 8.5%, 12.7%, and 6.8%, respectively. Dampness or indoor molds at baseline was a predictor of incidence of general (relative risk [RR] = 1.98), mucosal (RR = 2.28), and dermal symptoms (RR = 1.91). Women had higher incidence of general (RR = 1.74) and mucosal symptoms (RR = 1.71). Indoor painting increased the incidence of general symptoms (RR = 1.62). Bronchial responsiveness (BR), eosinophil counts in blood, total IgE and eosinophilic cationic protein (ECP) in serum at baseline were predictors of incidence of SBS. At follow-up, BR, total IgE, and C-reactive protein (CRP ) were associated with increased incidence of SBS. Moreover, subjects with doctor-diagnosed asthma at baseline had a higher incidence of general (RR = 1.65) and mucosal symptoms (RR = 1.97). In conclusion, female gender, dampness or indoor molds, indoor painting, and biomarkers of allergy and inflammation were associated with a higher incidence of SBS symptoms, in particular mucosal symptoms. PRACTICAL IMPLICATIONS: The focus in Sweden on indoor environment issues over the last few decades has resulted in improvements in dwellings, and reduced tobacco smoking, which could be beneficial for public health. Reducing dampness and molds in the dwelling place is another important way of reducing occurrence of SBS symptoms in the general adult population. The association between the incidence of SBS symptoms and clinical biomarkers of allergy and inflammation suggests a common etiology between inflammatory diseases, including asthma, rhinitis, and SBS. Lastly, good agreement between self-reported and clinically diagnosed atopy indicates that questionnaire data on atopy can be used in epidemiological studies.  相似文献   

5.
Dust collection by study participants instead of fieldworkers would be a practical and cost-effective alternative in large-scale population studies estimating exposure to indoor allergens and microbial agents. We aimed to compare dust weights and biological agent levels in house dust samples taken by study participants with nylon socks, with those in samples taken by fieldworkers using the sampling nozzle of the Allergology Laboratory Copenhagen (ALK). In homes of 216 children, parents and fieldworkers collected house dust within the same year. Dust samples were analyzed for levels of allergens, endotoxin, (1-->3)-beta-D-glucans and fungal extracellular polysaccharides (EPS). Socks appeared to yield less dust from mattresses at relatively low dust amounts and more dust at high dust amounts than ALK samples. Correlations between the methods ranged from 0.47-0.64 for microbial agents and 0.64-0.87 for mite and pet allergens. Cat allergen levels were two-fold lower and endotoxin levels three-fold higher in socks than in ALK samples. Levels of allergens and microbial agents in sock samples taken by study participants are moderately to highly correlated to levels in ALK samples taken by fieldworkers. Absolute levels may differ, probably because of differences in the method rather than in the person who performed the sampling. Practical Implications Dust collection by participants is a reliable and practical option for allergen and microbial agent exposure assessment. Absolute levels of biological agents are not (always) comparable between studies using different dust collection methods, even when expressed per gram dust, because of potential differences in particle-size constitution of the collected dust.  相似文献   

6.
A previous study showed that classical building-related symptoms (BRS) were related to indoor dust and microbial toxicity via boar sperm motility assay, a sensitive method for measuring mitochondrial toxicity. In this cross-sectional study, we analyzed whether teachers’ most common work-related non-literature-known BRS (nBRS) were also associated with dust or microbial toxicity. Teachers from 15 schools in Finland completed a questionnaire evaluating 20 nBRS including general, eye, respiratory, hearing, sleep, and mental symptoms. Boar sperm motility assay was used to measure the toxicity of extracts from wiped dust and microbial fallout samples collected from teachers’ classrooms. 231 teachers answered a questionnaire and their classroom toxicity data were recorded. A negative binomial mixed model showed that teachers’ work-related nBRS were 2.9-fold (95% CI: 1.2-7.3) higher in classrooms with highly toxic dust samples compared to classrooms with non-toxic dust samples (p = 0.024). The RR of work-related nBRS was 1.8 (95% CI: 1.1-2.9) for toxic microbial samples (p = 0.022). Teachers’ BRS appeared to be broader than reported in the literature, and the work-related nBRS were associated with toxic dusts and microbes in classrooms.  相似文献   

7.
Dampness and visible mold in homes are associated with asthma development, but causal mechanisms remain unclear. The goal of this research was to explore associations among measured dampness, fungal exposure, and childhood asthma development without the bias of culture‐based microbial analysis. In the low‐income, Latino CHAMACOS birth cohort, house dust was collected at age 12 months, and asthma status was determined at age 7 years. The current analysis included 13 asthma cases and 28 controls. Next‐generation DNA sequencing methods quantified fungal taxa and diversity. Lower fungal diversity (number of fungal operational taxonomic units) was significantly associated with increased risk of asthma development: unadjusted odds ratio (OR) 4.80 (95% confidence interval (CI) 1.04–22.1). Control for potential confounders strengthened this relationship. Decreased diversity within the genus Cryptococcus was significantly associated with increased asthma risk (OR 21.0, 95% CI 2.16–204). No fungal taxon (species, genus, class) was significantly positively associated with asthma development, and one was significantly negatively associated. Elevated moisture was associated with increased fungal diversity, and moisture/mold indicators were associated with four fungal taxa. Next‐generation DNA sequencing provided comprehensive estimates of fungal identity and diversity, demonstrating significant associations between low fungal diversity and childhood asthma development in this community.  相似文献   

8.
Zhao ZH  Elfman L  Wang ZH  Zhang Z  Norbäck D 《Indoor air》2006,16(6):404-413
We compared the school environment, asthma and allergy in 10 schools in Taiyuan, China, with eight schools in Uppsala, Sweden. In total 2193 pupils (mean age 13 years) participated. Chinese pupils had more respiratory symptoms, particularly daytime breathlessness after exercise (29.8% vs. 7.1%; P < 0.001), while cat allergy (1.2% vs. 6.6%; P < 0.001) and dog allergy (1.3% vs. 4.0%; P < 0.01) was less common. Cumulative incidence of asthma (1.8% vs. 9.5%; P < 0.001) and doctor's diagnosed asthma (1.2% vs. 9.0%; P < 0.001) were less common in China, indicating an under-diagnosis of asthma. Chinese classrooms were colder (mean 14.7 vs. 21.4 degrees C), more humid (mean 42% vs. 31% RH) and had higher CO2-levels (mean 2211 vs. 761 ppm). Levels of cat (Fel d1), dog (Can f1) allergens were low in settled dust from China (< 200 ng/g dust), but high in airborne dust on Petri-dishes (GM 16.8 ng/m2/day for Fel d1 and 17.7 for Can f1). The Swedish settled dust contained cat, dog and horse allergens in high levels (median 1300 ng/g, 1650 ng/g, 1250 U/g dust, respectively). In conclusion, there were large differences in the school environment, and in respiratory symptom and allergy. Allergen measurements in settled dust only may largely underestimate the classroom exposure. Practical Implications There is a need to improve the school environment, both in China and Sweden. The Swedish schools contained high levels of cat, dog and horse allergens and more amounts of open shelves and textiles that can accumulate dust and allergens. The air measurements indicated that Chinese schools may contain significant amounts of cat and dog allergen, and analysis of settled dust only may not reflect the true allergen exposure. Since the Chinese schools had no mechanical ventilation, they could not fulfill the ventilation standard in winter, and hence there is a need for improving the ventilation. The great discrepancy between respiratory symptoms and reports on asthma, and the high prevalence of attacks of breathlessness without wheeze, may have implication for future questionnaire studies on asthma in China.  相似文献   

9.
Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next‐generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non‐random and demonstrated species segregation (C‐score, < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (< 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics.  相似文献   

10.
The aim was to study asthma and allergy in relation to diet and the school environment. Pupils (5-14 years) in eight schools received a questionnaire, 1014 participated (68%). Settled dust was collected on ALK-filters and analyzed for allergens from cat (Fel d 1), dog (Can f 1), horse (Equ cx), house dust mites (Der p 1, Der f 1), and cockroach (Bla g 1) by ELISA. In total, 6.8% reported cat allergy, 4.8% dog allergy, 7.7% doctor's diagnosed asthma and 5.9% current asthma, and 7.8% reported wheeze. Current asthma was less common among those consuming more fresh milk (P < 0.05) and fish (P < 0.01). Poly-unsaturated fatty acids was associated with more wheeze (P < 0.05), olive oil was associated with less doctors' diagnosed asthma (P < 0.05). Totally, 74% of the classrooms had mean CO(2) <1000 ppm. The median concentration per gram dust was 860 ng/g Fel d 1, 750 ng/g Can f 1 and 954 U/g Equ cx. Horse allergen was associated with more wheeze (P < 0.05), daytime breathlessness (P < 0.05), current asthma (P < 0.05) and atopic sensitization (P < 0.05). Dog allergen was associated with wheeze (P < 0.05) and daytime breathlessness (P < 0.05). The associations between allergens and respiratory symptoms were more pronounced among those consuming margarine, not consuming butter, and with a low intake of milk. In conclusion, cat, dog and horse allergens in schools could be a risk factor for asthma and atopic sensitization, and dietary factors may interact with the allergen exposure. PRACTICAL IMPLICATIONS: Previous school studies performed by us in mid-Sweden, showed that most classrooms did not fulfill the ventilation standards. In this study, most of the classrooms fulfilled the ventilation standard, but despite that had widespread allergen contamination. Most previous studies have focused on cat allergen, but our study has shown that also dog and horse allergens can be risk factors for asthma and allergy in schools. As allergens are transported from other environments, mainly the home environment, the main prevention should be to minimize transfer of allergens. This could be achieved by reducing contacts with furry pets and horses, or using different clothes at home and at school (e.g. school uniforms). Increased cleaning in the schools may reduce allergen levels, but the efficiency of this measure must be evaluated in further intervention studies. Finally, our study supports the view that dietary habits among pupils should not be neglected and interaction between dietary factors and indoor allergen exposure needs to be further investigated.  相似文献   

11.
Park JH  Cox-Ganser J  Rao C  Kreiss K 《Indoor air》2006,16(3):192-203
We investigated the associations of fungal and endotoxin levels in office dust with respiratory health in 888 (67% participation) occupants of a water-damaged building. We analyzed floor and chair dusts from 338 workstations for culturable fungi and endotoxin. Based on averages, we ranked each floor of the building as low, medium, or high for occupants' exposure to each of these agents. Multivariate logistic regression models for building-related symptoms included this ranking of fungi and endotoxin, age, gender, race, smoking status, and duration of occupancy. Using floor dust measures, we found significantly increased odds for lower respiratory symptoms [wheeze, chest tightness, attacks of shortness of breath, and attacks of cough: odds ratios (OR) = 1.7 (95% confidence interval (CI): 1.02-2.77) to 2.4 (95% CI: 1.29-4.59)], throat irritation [OR = 1.7, (95% CI: 1.06-2.82)], and rash/itchy skin [OR = 3.0, (95% CI: 1.47-6.19)] in the highest fungal exposure group compared to the lowest, with generally linear exposure-response relationships. Nonlinear relationships were observed for many of these symptoms and endotoxin in floor dust. Interaction models showed that endotoxin modified effects of fungi on respiratory symptoms. Our findings of exposure interactions and exposure-response relationships of fungal and endotoxin with increased risk of building-related symptoms contribute to an understanding of the role of microbial agents in building-related asthma and respiratory and systemic symptoms. PRACTICAL IMPLICATIONS: Our demonstration of exposure-response relationships between measurements of fungi and/or endotoxin in floor dusts and building-related symptoms implies that microbial agents in floor dust may be a good surrogate measure for dampness-related bioaerosol exposure, considering that measurements of microbial agents in air often fail to demonstrate the associations between exposure and health. In addition, our finding that endotoxin exposure may change the effect of fungal exposure (and vice versa) on respiratory heath suggests that exposure to both fungi and endotoxin should be assessed in epidemiological investigations examining the effect of fungal or endotoxin exposure on respiratory health in indoor environments.  相似文献   

12.
Moisture-damaged buildings are associated with respiratory symptoms and underlying diseases among building occupants, but the causative agent(s) remain a mystery. We first identified specific fungal and bacterial taxa in classrooms with moisture damage in Finnish and Dutch primary schools. We then investigated associations of the identified moisture damage indicators with respiratory symptoms in more than 2700 students. Finally, we explored whether exposure to specific taxa within the indoor microbiota may explain the association between moisture damage and respiratory health. Schools were assessed for moisture damage through detailed inspections, and the microbial composition of settled dust in electrostatic dustfall collectors was determined using marker-gene analysis. In Finland, there were several positive associations between particular microbial indicators (diversity, richness, individual taxa) and a respiratory symptom score, while in the Netherlands, the associations tended to be mostly inverse and statistically non-significant. In Finland, abundance of the Sphingomonas bacterial genus and endotoxin levels partially explained the associations between moisture damage and symptom score. A few microbial taxa explained part of the associations with health, but overall, the observed associations between damage-associated individual taxa and respiratory health were limited.  相似文献   

13.
Allergy to indoor allergens can cause frequent and severe health problems in children. Because little is known about the content of allergens in the indoor environments in Norway, we wanted to assess the levels of cat, dog and mite allergens in schools and day-care centers in Oslo. Allergen levels in dust samples from 155 classrooms and 81 day-care units were measured using commercially available enzyme-linked immunosorbent assay (ELISA) kits. Additionally, we measured the levels of endotoxin in 31 day-care units, using the limulus amebocyte lysate test. Most of the dust samples contained detectable amounts of cat and dog allergens. In mattress and floor dust (day-care centers), and curtain and floor dust (schools) the median Fel d 1 levels were 0.17, 0.002, 0.02 and 0.079 microg/m2, while the median Can f 1 levels were 1.7, 0.03, 0.1 and 0.69 microg/m2, respectively. Levels of cat and dog allergens in school floor dust were associated with the number of pupils with animals at home. In contrast, <1% of the samples had measurable levels of the mite allergen Der p 1. Moreover, the levels of endotoxin tended to be higher in dust from floors (1.4 ng/m2) compared with that from mattresses (0.9 ng/m2). PRACTICAL IMPLICATIONS: To reduce allergen exposure, allergic individuals should be placed in the classes/rooms with the fewest pet owners. Moreover, mattresses in day-care centers are major reservoirs of cat and dog allergens and should be cleaned frequently.  相似文献   

14.
Considering that high school students spend a large proportion of their waking hours in the school environment, this could be an important location for exposure to indoor allergens. We have investigated the levels of mouse and cockroach allergens in the settled dust and air from 11 schools in a major northeastern US city. Settled dust samples were vacuumed from 87 classrooms, three times throughout the school year. Two separate air samples (flow = 2.5 lpm) were collected by 53 students over a 5-day period from both their school and their home. Mouse allergen (MUP) in the dust varied greatly between schools with geometric means ranging from 0.21 to 133 microg/g. Mouse allergen was detectable in 81% of the samples collected. Cockroach allergen (Bla g 2) ranged from below limit of detection (<0.003 microg/g) to 1.1 microg/g. Cockroach allergen was detected (>0.003 microg/g) in 71% of the dust samples. Bla g 2 was detected in 22% of airborne samples from the schools. By comparison, mouse allergen was only detected in 5%. These results indicate that the school may be an important location for exposure to allergens from mice and cockroaches and is an indoor environment that should be considered in an overall allergen intervention strategy. PRACTICAL IMPLICATIONS: To date, cockroach and mouse allergen intervention strategies have been mainly focused on the home environment. Considering that children spend a significant amount of time in schools, some studies have assessed cockroach allergen levels in schools. This study provides a clearer picture of the distribution and variability of not only cockroach allergen, but also mouse allergen in the school environment. In addition, this study describes limitations of personal air sampling in a student population. Our results suggest that although cockroach and mouse allergens are commonly recovered in classroom dust samples of inner city schools, cockroach allergens are recovered in the personal air samples with a greater frequency relative to mouse allergens.  相似文献   

15.
Kim JL  Elfman L  Norbäck D 《Indoor air》2007,17(2):122-129
We studied reports on respiratory symptoms, asthma and atopic sensitisation in relation to allergen contamination in Korean schools and compared with data from a previous Swedish study performed in eight primary schools. Korean pupils (n = 2365) in 12 primary schools first completed a questionnaire. Then airborne and settled dust were collected from 34 classrooms and analyzed for allergens by ELISA. In both countries, boys reported more symptoms. The prevalence of wheeze was similar, while daytime [odds ratio (OR) = 14.0, 95% confidence interval (CI) = 9.0-21.9] and nocturnal breathlessness (OR = 3.1, 95% CI = 1.5-6.4) were much higher among Korean students. In Korean schools, dog allergen (Can f 1) was the most common followed by mite allergen (Der f 1), while cat (Fel d 1), dog, and horse allergen (Equ cx) were abundant in Sweden. Moreover, CO(2) levels were high in most Korean schools (range 907-4113 ppm). There was an association between allergen levels in dust and air samples, and number of pet-keepers in the classrooms. In conclusion, allergen contamination in Korean schools may be an important public issue. PRACTICAL IMPLICATIONS: This study showed that furry pet allergen contamination was common in both Korean and Swedish schools. In addition, house dust-mite (Der f 1) allergen contamination was common in Korean schools, probably because of transport of allergen from other environments. Transfer should therefore be minimized. Korean schools had high CO(2) levels and the concept of mechanical ventilation should be introduced. Measurement of airborne allergen levels is quite new and seems to be a more convenient and correct way to monitor allergen exposure in classrooms.  相似文献   

16.
Scientific literature on the effects of ventilation on health, comfort, and productivity in non-industrial indoor environments (offices, schools, homes, etc.) has been reviewed by a multidisciplinary group of European scientists, called EUROVEN, with expertise in medicine, epidemiology, toxicology, and engineering. The group reviewed 105 papers published in peer-reviewed scientific journals and judged 30 as conclusive, providing sufficient information on ventilation, health effects, data processing, and reporting, 14 as providing relevant background information on the issue, 43 as relevant but non-informative or inconclusive, and 18 as irrelevant for the issue discussed. Based on the data in papers judged conclusive, the group agreed that ventilation is strongly associated with comfort (perceived air quality) and health [Sick Building Syndrome (SBS) symptoms, inflammation, infections, asthma, allergy, short-term sick leave], and that an association between ventilation and productivity (performance of office work) is indicated. The group also concluded that increasing outdoor air supply rates in non-industrial environments improves perceived air quality; that outdoor air supply rates below 25 l/s per person increase the risk of SBS symptoms, increase short-term sick leave, and decrease productivity among occupants of office buildings; and that ventilation rates above 0.5 air changes per hour (h-1) in homes reduce infestation of house dust mites in Nordic countries. The group concluded additionally that the literature indicates that in buildings with air-conditioning systems there may be an increased risk of SBS symptoms compared with naturally or mechanically ventilated buildings, and that improper maintenance, design, and functioning of air-conditioning systems contributes to increased prevalence of SBS symptoms.  相似文献   

17.
Aiming to identify factors causing the adverse health effects associated with moisture‐damaged indoor environments, we analyzed immunotoxicological potential of settled dust from moisture‐damaged and reference schools in relation to their microbiological composition. Mouse RAW264.7 macrophages were exposed to settled dust samples (n = 25) collected from moisture‐damaged and reference schools in Spain, the Netherlands, and Finland. After exposure, we analyzed production of inflammatory markers [nitric oxide (NO), tumor necrosis factor‐α (TNF‐)α, interleukin (IL)‐6, and macrophage inflammatory protein (MIP)2] as well as mitochondrial activity, viability, apoptosis, and cell cycle arrest. Furthermore, particle counts, concentration of selected microbial groups as well as chemical markers such as ergosterol, 3‐hydroxy fatty acids, muramic acid, endotoxins, and glucans were measured as markers of exposure. Dust from moisture‐damaged schools in Spain and the Netherlands induced stronger immunotoxicological responses compared to samples from reference schools; the responses to Finnish samples were generally lower with no difference between the schools. In multivariate analysis, IL‐6 and apoptosis responses were most strongly associated with moisture status of the school. The measured responses correlated with several microbial markers and numbers of particles, but the most important predictor of the immunotoxicological potential of settled dust was muramic acid concentration, a marker of Gram‐positive bacteria.  相似文献   

18.
This study examined: (i) biocontaminant levels in flooded homes of New Orleans two years after the flooding; (ii) seasonal changes in biocontaminant levels, and (iii) correlations between biocontaminant levels obtained by different environmental monitoring methods. Endotoxin, (1 → 3)-β-d-glucan, fungal spores, and dust mite allergens were measured in 35 homes during summer and winter. A combination of dust sampling, aerosolization-based microbial source assessment, and long-term inhalable bioaerosol sampling aided in understanding exposure matrices. On average, endotoxin found in the aerosolized fraction accounted for < 2% of that measured in the floor dust, suggesting that vacuuming could overestimate inhalation exposures. In contrast, the (1 → 3)-β-d-glucan levels in the floor dust and aerosolized fractions were mostly comparable, and 25% of the homes showed aerosolizable levels even higher than the dust-borne levels. The seasonal patterns for endotoxin in dust and the aerosolizable fraction were different from those found for (1 → 3)-β-d-glucan, reflecting the temperature and humidity effects on bacterial and fungal contamination. While the concentration of airborne endotoxin followed the same seasonal trend as endotoxin aerosolized from surfaces, no significant seasonal difference was identified for the concentrations of airborne (1 → 3)-β-d-glucan and fungal spores. This was attributed to the difference in the particle size; smaller endotoxin-containing particles can remain airborne for longer time than larger fungal spores or (1 → 3)-β-d-glucan-containing particles. It is also possible that fungal aerosolization in home environments did not reach its full potential. Detectable dust mite allergens were found only in dust samples, and more commonly in occupied homes. Levels of endotoxin, (1 → 3)-β-d-glucan, and fungi in air had decreased during the two-year period following the flooding as compared to immediate measurements; however, the dust-borne endotoxin and (1 → 3)-β-d-glucan levels remained elevated. No conclusive correlations were found between the three environmental monitoring methods. The findings support the use of multiple methods when assessing exposure to microbial contaminants.  相似文献   

19.
This study was designed to produce information about microbial concentrations using qPCR and their variation in different seasons and home environments with analyses of two types of house dust samples. Also the correlations between the two types of samples and the reproducibility of the parallel subsamples were studied. Two types of vacuumed house dust samples, rug dust and vacuum cleaner bag dust, were collected in 5 normal urban homes in four different seasons (N = 20 + 20). From all dust samples, five parallel subsamples were subjected to qPCR analyses of 17 microbial species or assay groups of microbes. The highest fungal concentrations were found for the Penicillium/Aspergillus/Paecilomyces variotii group, and for the species Aspergillus penicillioides, Aureobasidium pullulans, Cladosporium cladosporioides and Cladosporium herbarum. These species/groups were present in almost all samples. The two types of dust samples gave similar results for most microbial species or groups analyzed, but in general, concentrations were slightly higher in rug dust than in dust from vacuum cleaner bag. Microbial concentrations varied significantly between different seasons and hence the similarity of samples within home was mainly low. The concentrations varied significantly also between different home environments. The reproducibility of the parallel subsamples was good or moderate for most of the analyzed species or assay groups. However, further studies are needed to fully understand the factors causing variation in these methods. Nevertheless, in order to show actual differences in fungal concentrations between urban homes with no known microbial sources, all dust samples to be compared should be taken during the same season.  相似文献   

20.
Exposure to moisture‐damaged indoor environments is associated with adverse respiratory health effects, but responsible factors remain unidentified. In order to explore possible mechanisms behind these effects, the oxidative capacity and hemolytic activity of settled dust samples (n = 25) collected from moisture‐damaged and non‐damaged schools in Spain, the Netherlands, and Finland were evaluated and matched against the microbial content of the sample. Oxidative capacity was determined with plasmid scission assay and hemolytic activity by assessing the damage to isolated human red blood cells. The microbial content of the samples was measured with quantitative PCR assays for selected microbial groups and by analyzing the cell wall markers ergosterol, muramic acid, endotoxins, and glucans. The moisture observations in the schools were associated with some of the microbial components in the dust, and microbial determinants grouped together increased the oxidative capacity. Oxidative capacity was also affected by particle concentration and country of origin. Two out of 14 studied dust samples from moisture‐damaged schools demonstrated some hemolytic activity. The results indicate that the microbial component connected with moisture damage is associated with increased oxidative stress and that hemolysis should be studied further as one possible mechanism contributing to the adverse health effects of moisture‐damaged buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号