首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical partition coefficients between environmental media and biological tissues are a key component of bioaccumulation models. The single-parameter linear free energy relationships (spLFERs) commonly used for predicting partitioning are often derived using apolar chemicals and may not accurately capture polar chemicals. In this study, a poly-parameter LFER (ppLFER) based model of organic chemical bioaccumulation in humans is presented. Chemical partitioning was described by an air-body partition coefficient that was a volume weighted average of ppLFER based partition coefficients for the major organs and tissues constituting the human body. This model was compared to a spLFER model treating the body as a mixture of lipid (≈ octanol) and water. Although model agreement was good for hydrophobic chemicals (average difference 15% for log KOW > 4 and log KOA > 8), the ppLFER model predicted ~ 90% lower body burdens for hydrophilic chemicals (log KOW < 0). This was mainly due to lower predictions of muscle and adipose tissue sorption capacity for these chemicals. A comparison of the predicted muscle and adipose tissue sorption capacities of hydrophilic chemicals with measurements indicated that the ppLFER and spLFER models' uncertainties were similar. Consequently, little benefit from the implementation of ppLFERs in this model was identified.  相似文献   

2.
The fugacity-based food web model was developed to simulate the bioaccumulation of dichloro-diphenyl-trichloroethanes (DDTs) in the aquatic ecosystem in the Bohai Bay. The internal exposure levels (IELs) of DDTs in various organism categories were calculated. Monte Carlo-based uncertainty analysis was performed to get the of IEL distributions of DDTs in organisms. Probabilistic ecological risk assessment (ERA) was performed based on IEL distributions and internal species sensitivity distributions (SSDs). The results show that fugacities and bioaccumulation factors (BAFs) generally increased with increasing trophic level in the food web. Octanol-water partition coefficient (Kow), DDT levels in water and the lipid contents had the greatest influences on IELs in the organism bodies. The ecological risks of DDTs were relatively high. The risk order was p,p′-DDT > p,p′-DDE > p,p′-DDD. At an internal hazard quotient (HQint) criterion of 1/5, the risk probabilities were 0.10 (0.055-0.17), 0.079 (0.045-0.13) and 0.053 (0.028-0.092) for p,p′-DDT, p,p′-DDE and p,p′-DDD, respectively. The results from ERA based on the internal exposure approximated those based on external exposure. The food web model is a feasible method to predict the extent of bioaccumulation and IELs of hydrophobic organic pollutants in organisms as a step to evaluate their risk posed on aquatic ecosystems.  相似文献   

3.
To test how environmental conditions in the Arctic and the resulting ecological adaptations affect accumulation of persistent organic pollutants (POPs) in the marine food web, bioaccumulation of four polychlorinated biphenyls (PCBs) in an arctic (Barents Sea 77 °N-82 °N) and a temperate marine (Baltic Sea 54 °N-62 °N) food web were compared. Three different trophic levels were studied (zooplankton, fish, and seal), representing the span from first-level consumer to top predator. Previously published high-quality data on PCB water concentrations in the two areas were used for calculation of bioaccumulation factors (BAF). BAF was calculated as the ratio of the PCB concentration in the organism ([PCB]org; pg/kg lipid) to the dissolved water concentration (Cw; pg/L). The BAFArctic:BAFTemperate ratios were above 1 for all four PCB congeners in zooplankton (6.4-13.8) and planktivorous fish (2.9-5.0)), whereas the ratios were below 1 in seal. The mean ratio between arctic and temperate BAFs for all trophic levels and congeners (BAFArcti:BAFTemperate) was 4.8. When the data were corrected for the seawater temperature difference between the two ecosystems, the ratio was 2.0. We conclude that bioaccumulation differences caused by ecological or physiological adaptations of organisms between the two ecosystems were well within a water concentration variability of 50%. Further, our data support the hypothesis that lower seawater temperature lead to a thermodynamically favoured passive partitioning to organic matrices and thus elevated ambient BAFs in the Arctic compared to the Baltic Sea. This would imply that bioaccumulation in the Arctic may be described in the same way as bioaccumulation in temperate regions, e.g. by the use of mechanistic models parameterised for the Arctic.  相似文献   

4.
Bioaccumulation of Pb was determined in Chlamys varia and Pecten maximus exposed to 210Pb via seawater, food and sediment. Both scallops readily concentrated dissolved Pb with whole-body 7-d concentration factors of 250 ± 40 and 170 ± 70, respectively. In both species, more than 70% of Pb taken up from seawater was strongly retained within tissues (biological half-life > 1.5 month) whereas Pb ingested with phytoplankton was poorly assimilated (< 20%). As P. maximus lives buried in the sediment, this exposure pathway was assessed and showed low bioaccumulation efficiency for sediment-bound Pb (transfer factor < 0.015). Despite the poor transfer efficiency of Pb from food and sediment, the use of a global bioaccumulation model indicated that the particulate pathway (food and/or sediment) constituted the major bioaccumulation route of Pb in both scallops. Whatever the exposure pathway, the digestive gland and kidneys always played a major role in Pb accumulation. In scallop tissues, Pb was predominantly associated with the insoluble subcellular fraction, suggesting a low bioavailability of Pb for scallop consumers.  相似文献   

5.
Eutrophication and contamination with micropollutants have been major problems in water quality management. Both problems have been subjected to extensive research and modelling but traditionally are treated separately. Traditional simulation models for aquatic systems can be categorised as eutrophication models, contaminant fate models, food web models and food chain bioaccumulation models. Because they are single issue models, many interactions and feedbacks between the food web, nutrient and toxicant cycles are missed. Linking these models is essential to evaluate the fate and risks of contaminants in systems with changing nutrient loading, to assess the natural attenuation of contaminants or to understand the selfpurifying capacity of ecosystems. Combination of the single issue models requires inclusion of 'interaction processes' to account for the coupling between the (sub-) model types, such as organic carbon cycling. toxicity, transport and accumulation of organic contaminants in the food chain, and bottom up versus top down control of primary production and nutrient cycling. This review first provides a brief overview of traditional approaches in modelling eutrophication, contaminant fate, food web dynamics and food chain bioaccumulation. Second, five existing integrated eutrophication, fate and/or effects models are reviewed. Third, the gaps and limitations in modelling the four types of interaction processes are discussed. It is concluded that these models are invaluable tools to focus attention to feedback mechanisms that are often overlooked, to identify dominating processes in ecosystems, to formulate counterintuitive hypotheses on ecosystem functioning, or to assess short term risks of acutely toxic stressors. However, the potential of integrated models for long term simulations of contaminant exposure. food chain bioaccumulation and effects to higher trophic levels remains limited, mainly because of principal limitations in food web modelling. In contrast, the potential of integrated models for long term simulations of contaminant fate is better because the environmental distribution of contaminants is mainly determined by the major abiotic compartments and by biotic compartments at the base of the food chain.  相似文献   

6.
Ecological food web analysis for chemical risk assessment   总被引:1,自引:0,他引:1  
Food web analysis can be a critical component of ecological risk assessment, yet it has received relatively little attention among risk assessors. Food web data are currently used in modeling bioaccumulation of toxic chemicals and, to a limited extent, in the determination of the ecological significance of risks. Achieving more realism in ecological risk assessments requires new analysis tools and models that incorporate accurate information on key receptors in a food web paradigm. Application of food web analysis in risk assessments demands consideration of: 1) different kinds of food webs; 2) definition of trophic guilds; 3) variation in food webs with habitat, space, and time; and 4) issues for basic sampling design and collection of dietary data. The different kinds of food webs include connectance webs, materials flow webs, and functional (or interaction) webs. These three kinds of webs play different roles throughout various phases of an ecological risk assessment, but risk assessors have failed to distinguish among web types. When modeling food webs, choices must be made regarding the level of complexity for the web, assignment of species to trophic guilds, selection of representative species for guilds, use of average diets, the characterization of variation among individuals or guild members within a web, and the spatial and temporal scales/dynamics of webs. Integrating exposure and effects data in ecological models for risk assessment of toxic chemicals relies on coupling food web analysis with bioaccumulation models (e.g., Gobas-type models for fish and their food webs), wildlife exposure models, dose-response models, and population dynamics models.  相似文献   

7.
Passive sampling is a tool to monitor the presence and concentrations of micropollutants in the aquatic environment. We investigated the duration of integrative sampling and the effects of flow rate on the performance of three configurations of the Chemcatcher - a sampler for polar organic compounds. Chemcatchers were fitted with Empore™ styrenedivinylbenzene (SDB) XC disks (XC), SDB-RPS disks (RPS) or SDB-RPS disks covered with a polyethersulfone membrane (RPS-PES). Samplers were either exposed to treated sewage effluent for 5 days at various flow rates, or at a single flow rate with overlapping exposures of 3-24 days. Chemical analysis focused on a set of pharmaceuticals and biocides and ecotoxicological analysis measured inhibition of photosystem II in algae. For compounds with log KOW > 2, both XC and RPS disks respond dynamically to higher flow rates; uptake increased up to five-fold when flow increased from 0.03 to 0.37 m s−1. At a flow rate of 0.13 m s−1 the integrative window of SDB disks approached 6 days for more hydrophobic compounds (log KOW > 3.5). The RPS-PES configuration was less affected by flow and also showed an extended integrative window (up to 24 days). The membrane causes a lag phase of up to 2.3 days which thwarts a sound interpretation of data from sampling periods of less than 10 days.  相似文献   

8.
The European REACH legislation establishes the need to study the toxicity, persistence and bioaccumulation of those chemicals with an exceeding production of 100 tons and/or chemicals considered PBTs substances (Persistence, Bioaccumulation and Toxicity). Currently, the OECD technical guideline 305 is the most used protocol to determine bioconcentration factors of contaminants in aquatic environments. However, this procedure implies high cost and amount of adult fishes. Zebrafish (Danio Rerio) has been selected since this animal model has several advantageous features over other vertebrates, mainly fast embryonic development and easy growth. The analytical methodology here developed has been applied to calculate the bioconcentration factors (BCFs) of two contaminants: inorganic arsenic and tributyltin (measured as arsenic and tin). The method is based on the use of an ultrasonic probe assisted extraction for accelerating the sample treatment followed by detection using graphite furnace atomic absorption spectrometry with Zeeman correction (ZGFAAS). Results obtained for the BCFs values are in good agreement with previously reported data on freshwater aquatic organisms. In the case of arsenic, after exposing larvae to concentrations of 5 and 50 μg L−1, very low BCFs were observed (between 2.2 and 9.5); while for tributyltin, the BCFs observed were within the range 840-1280 after exposure to concentrations of 0.2 and 2.0 μg L−1, respectively. This study shows the use of zebrafish larvae together with the proposed analytical approach as a promising alternative to the OECD 305 test to evaluate the BCFs of classical and emergent contaminants.  相似文献   

9.
Sludge reed beds have been used for dewatering (draining and evapotranspiration) and mineralisation of sludge in Europe since 1988. Although reed beds are considered as a low cost and low contamination method in reducing volume, breaking down organic matter and increasing the density of sludge, it is not yet clear whether this enhanced biological treatment is suitable for degradation of organic micro-pollutants such as personal care products. Within this project the effect of biological sludge treatment in a reed bed on reducing the concentrations of the fragrances HHCB, AHTN, OTNE was studied as on the bactericide Triclosan. Additionally, the capacity of different macrophytes species to affect the treatment process was examined.Three different macrophyte species were compared: bulrush (Typha latifolia), reed (Phragmites australis) and reed canary grass (Phalaris arundinacea). They were planted into containers (lysimeters) with a size of 1 m × 1 m × 1 m which were filled with 20 cm gravel at the bottom and 50 cm sludge on top, into which the macrophytes were planted. During the twelve months experiment reduction of 20-30% for HHCB and AHTN, 70% for Triclosan and 70% for OTNE were determined under environmental conditions. The reduction is most likely due to degradation, since volatilization, uptake into plants and leaching are insignificant. No difference between the containers with different macrophyte species or the unplanted containers was observed. Considering the usual operation time of 10 years for reed beds, an assessment was made for the whole life time.  相似文献   

10.
Regime shifts in shallow lakes may significantly affect partitioning of sediment-bound hydrophobic organic chemicals (HOCs) such as polychlorobiphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). In replicated experimental model ecosystems mimicking the alternative stable states ‘macrophyte-dominated’ and ‘suspended solid – phytoplankton dominated’, we tested the effects of macrophytes and benthivorous fish presence on mass distribution and bioaccumulation of hexachlorobenzene, PCBs and PAHs. HOC mass distributions and lipid-normalized concentrations in sediment (Soxhlet- and 6-h Tenax-extractable), suspended solids, macrophytes, periphyton, algae, zooplankton, invertebrates and carp revealed that mobile, i.e. less hydrophobic or less aged HOCs were more susceptible to ecological changes than their sequestered native counterparts. Macrophytes were capable of depleting considerable percentages of the bioavailable, fast desorbing HOC fractions in the sediment upper (bioactive) layer, but did not have a significant diluting effect on lipid-normalized HOC concentrations in carp. Carp structured invertebrate communities through predation and stimulated partitioning of HOCs to other system compartments by resuspending the sediment. These results show that shifts in ecosystem structure have clear effects on fate, risks and natural attenuation of sediment-bound organic contaminants.  相似文献   

11.
Experiments were conducted in controlled temperate freshwater ecosystems (microcosms) to determine the persistence and biogeochemical dynamic of tributyltin (TBT) and its degradation products. TBT and its derivatives were monitored simultaneously for 23 days (552 h) in sediment-water systems, with or without macroorganisms (macrophytes: Elodea canadensis and gastropods: Lymnaea stagnalis). Biphasic TBT removal from the water column was significantly enhanced by the presence of biota. The persistence of TBT in biota was assessed by a kinetic approach of the different bioaccumulation pathways and associated metabolisms adopted by the snails and the macrophytes in response to the TBT contamination. Furthermore, sediment acted for the final sink for butyltins in both types of microcosms, with more than 70% of TBT and its metabolites recovered in this compartment after two weeks of exposure. Degradation pathways in sediments of both biotic and abiotic microcosms appeared to represent a key process in TBT cycle and were characterized by half-lives in the range of one month. Specific transformation and transfer pathways of TBT as reactional mechanisms are discussed and modelled assessing in detail the role of each compartment with regards to the fate of TBT in the model aquatic ecosystems.  相似文献   

12.
This study investigated the main causes of haze episodes in the northwestern Thailand to provide early warning and prediction. In an absence of emission input data required for chemical transport modeling to predict the haze, the climatological approach in combination with statistical analysis was used. An automatic meteorological classification scheme was developed using regional meteorological station data of 8 years (2001-2008) which classified the prevailing synoptic patterns over Northern Thailand into 4 patterns. Pattern 2, occurring with high frequency in March, was found to associate with the highest levels of 24 h PM10 in Chiangmai, the largest city in Northern Thailand. Typical features of this pattern were the dominance of thermal lows over India, Western China and Northern Thailand with hot, dry and stagnant air in Northern Thailand. March 2007, the month with the most severe haze episode in Chiangmai, was found to have a high frequency of occurrence of pattern 2 coupled with the highest emission intensities from biomass open burning. Backward trajectories showed that, on haze episode days, air masses passed over the region of dense biomass fire hotspots before arriving at Chiangmai. A stepwise regression model was developed to predict 24 h PM10 for days of meteorology pattern 2 using February-April data of 2007-2009 and tested with 2004-2010 data. The model performed satisfactorily for the model development dataset (R2 = 87%) and test dataset (R2 = 81%), which appeared to be superior over a simple persistence regression of 24 h PM10 (R2 = 76%). Our developed model had an accuracy over 90% for the categorical forecast of PM10 > 120 μg/m3. The episode warning procedure would identify synoptic pattern 2 and predict 24 h PM10 in Chiangmai 24 h in advance. This approach would be applicable for air pollution episode management in other areas with complex terrain where similar conditions exist.  相似文献   

13.
Long-range atmospheric trace element contamination affecting natural systems has occurred since early historical times in the Northern Hemisphere. In relatively remote sites, soils are the largest reservoir of these airborne contaminants. Trace elements stored in soils can later be remobilised and thus soils are a potential delayed, long-lasting source of contamination for the aquatic ecosystems. Here we measured the atmospheric deposition and in-lake fluxes in order to model the transfer of Pb, Zn and As from terrestrial to aquatic ecosystems during the snow- and ice-free season in three mountain catchments in the Central Pyrenees. According to the model, there was a net export of Pb and As from the catchments. We postulate that accumulated anthropogenic Pb contamination and the weathering of As-rich rocks are the most likely sources. In contrast, Zn was largely retained in the catchment. For Pb and As, the terrestrial inputs were > 91% and for Zn were ~ 71% of the total inputs to the lakes. Nearly all Pb entering the lakes was retained in the sediments whereas 5-38% of As and Zn was lost through the outflow. We were unable to adjust the model for Zn for one of the lakes. The uptake by macrophytes could be a considerable sink for Zn, which was not considered in our transport model.  相似文献   

14.
Cabamazepine (CBZ), an antiepileptic pharmaceutical compound, is a pollutant of aquatic ecosystems entering via wastewater treatment plants that is considered to be persistent to degradation. An isotope exchange technique was employed using radiolabelled CBZ as a model compound, to determine the amount of isotopic exchangeability of CBZ in river sediment. The amount of isotopically exchangeable CBZ was used as an estimate of the extent of desorption hysteresis in solution from river sediment, including a treatment where the sediment was amended with black carbon. The isotopically exchangeable CBZ was measured by equilibrating 12C-CBZ with sediment for 0 to 28 days followed by a 24 hour equilibration with 14C-CBZ at the end of the incubation period. The isotopically exchangeable fraction of CBZ decreased over time in the sediment, particularly following amendment with black carbon. This has important implications for the fate of CBZ, which, apart from being resistant to degradation, is constantly released into aquatic ecosystems from wastewater treatment plants. This study demonstrates the availability of a relatively quick and simple alternative to batch desorption techniques for the assessment of the available fraction of organic compounds in sediments following their release into aquatic ecosystems.  相似文献   

15.
It has been proposed that the accumulation of PCBs by aquatic organisms is a physicochemical process that is governed by the equilibrium partitioning of PCBs between the organisms and the ambient water. This approach focuses primarily on the hydrophobicity of PCBs, while neglecting the biological impacts of PCB accumulation and possible differences in species-specific response. Furthermore, it does not reflect the complex mechanistic aspects of PCB accumulation. Current modeling, while focusing on accumulation via contaminated food, has been for large lake systems and is not appropriate for lower trophic organism interactions. The objective of this research was to evaluate the ecotoxicological fate of PCBs in a laboratory stream system and to determine if species-specific differences in the accumulation and toxic effects of PCBs existed. Bench scale experiments were conducted to determine kinetic and equilibrium parameters measuring algal uptake of PCB, and these results were used to explain the periphytic response to low level PCB exposure in the laboratory stream system. The results revealed that the accumulation rate, accumulation capacity and toxicity of PCBs differed for the species tested. The observation of PCB fate in the laboratory stream system indicated that PCB volatilization, sediment adsorption and periphyton bioaccumulation were the major pathways of PCB fate. The periphytic biolayer was the significant sink for PCB concentration. The accumulation capacity of periphytic biolayer to PCBs was one order of magnitude greater than that of sediments on a TOC basis. Comparison of the experimental data with model predictions illustrates that equilibrium partitioning models are not very accurate for predicting the accumulation of hydrophobic chemicals by low trophic biota.  相似文献   

16.
A new model of in-stream phosphorus and macrophyte dynamics, ‘The Kennet model’, was applied to a reach of the River Kennet, southern England. The reach, which is 1.5 km long, is immediately downstream of Marlborough sewage treatment works, where phosphorus reduction by tertiary effluent treatment began in September 1997. The model is used to simulate the flow, water chemistry and macrophyte biomass within the reach, both before and after phosphorus removal from the effluent. Monte Carlo experiments coupled with a general sensitivity analysis indicate that the model offers a feasible explanation for the salient aspects of the system behaviour. Model simulations indicate that epiphyte smothering is an important limitation to macrophyte growth, and that higher stream and pore water soluble reactive phosphorus (SRP) concentrations allow the earlier onset of growth for the epiphytes and macrophytes, respectively. Higher flow conditions are shown to reduce the simulated peak epiphyte biomass; though at present, the effect of flow on the macrophyte biomass is unclear. Another simulation result suggests that phosphorus will not be released from the bed sediments in this reach following phosphorus removal from the effluent.  相似文献   

17.
The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l− 1 in the mid to late 1960s to 6.0 mg l− 1 in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 μg l− 1 in the mid 1960s to a maximum of 190 μg l− 1 in 1989. In 2002, there was a step reduction in SRP concentration (average = 88 μg l− 1 in 2002-2005), with further improvement in 2007-2009 (average = 49 μg l− 1), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO2) of 60 times atmospheric CO2 were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO2 through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made freely available to the wider science community through the CEH data portal (http://gateway.ceh.ac.uk/).  相似文献   

18.
Estuarine sediments are often highly enriched in particle-reactive metal contaminants and because aquatic animals have often been shown to acquire metals predominantly from their diet, benthic animals feeding on deposited or resuspended sediments may also accumulate metals through this uptake pathway. Laboratory experiments were performed in which the surface deposit-feeding polychaete, Nereis succinea, was exposed to As(+ 5), Cd, and Cr(+ 3) in pore water or in estuarine sediments with and without enrichment with algal debris. These experiments generated metal uptake parameters (assimilation efficiency of ingested metal [AE], uptake rate constant of dissolved metal, efflux rate constants following dietary or aqueous metal exposures) used in a kinetic model of metal bioaccumulation. The model showed that > 97% of the body burden of these metals is accumulated through ingested sediment. The kinetic model was further modified to consider the geochemical fractionation of the metals in the sediments because metals bound to some fractions were shown to be unavailable to these polychaetes. The modified model substituted the AE term for each metal by the percentage of metal extracted in neutral and weak acid exchangeable fractions (termed “carbonex” fraction) multiplied by the slope of the regression between the metal AE and its fractionation in carbonex. The modified model generated predictions of As, Cd, and Cr body burdens in polychaetes at three different estuarine sites that matched independent field observations at these sites (r2 = 0.84 for sediments without organic enrichment, r2 = 0.87 with organic enrichment). Model predictions that relied on total metal concentrations showed weaker relationships (r2 = 0.11-0.50). This study adds to the evidence for the dominance of dietary uptake of metals in aquatic animals and identifies a key sedimentary fraction of metals that can account for bioavailability of sediment-bound metals.  相似文献   

19.
The modelling of the nitrification process of high-strength ammonium wastewater must be designed to consider it as a two-step reaction with substrate inhibition. Consequently, kinetic and stoichiometric parameters of both steps are required. In this work, the second step in the nitrification process was studied: a biological nitrite oxidation model was formulated, calibrated and validated using only oxygen uptake rate (OUR) measurements. The model included biomass growth and substrate inhibition. First, the biomass yield coefficient for nitrite-oxidising biomass was determined. Then, a respirometric experiment with one nitrite pulse of 500 mg N-NO2 L−1 was performed to estimate the rest of the model parameters. The practical identifiability study showed that the parameters were strongly correlated. Hence, a new experimental design consisting of two consecutive pulses and a delayed third one was designed to improve the parameter identifiability. Both experimental designs were compared using contour plots of the objective function and optimal experimental design criteria for parameter estimation. It was concluded that the parameter identifiability was improved with the new experimental design. Finally, the estimated parameters were validated and the pH effect on the inhibition coefficient was evaluated.  相似文献   

20.
Stream flow in urban aquatic ecosystems often is maintained by water-reclamation plant (WRP) effluents that contain mixtures of natural and anthropogenic chemicals that persist through the treatment processes. In effluent-impacted streams, aquatic organisms such as fish are continuously exposed to biologically-active chemicals throughout their life cycles. The North Shore Channel of the Chicago River (Chicago, Illinois) is part of an urban ecosystem in which > 80% of the annual flow consists of effluent from the North Side WRP. In this study, multiple samplings of the effluent and stream water were conducted and fish (largemouth bass and carp) were collected on 2 occasions from the North Shore Channel. Fish also were collected once from the Outer Chicago Harbor in Lake Michigan, a reference site not impacted by WRP discharges. Over 100 organic chemicals with differing behaviors and biological effects were measured, and 23 compounds were detected in all of the water samples analyzed. The most frequently detected and highest concentration (> 100 μg/L) compounds were ethylenediaminetetraacetic acid and 4-nonylphenolmono-to-tetraethoxycarboxylic acids. Other biologically-active chemicals including bisphenol A, 4-nonylphenol, 4-nonylphenolmono-to-tetraethoxylates, 4-tert-octylphenol, and 4-tert-octylphenolmono-to-tetraethoxylates were detected at lower concentrations (< 5 μg/L). The biogenic steroidal hormones 17β-estradiol, estrone, testosterone, 4-androstene-3,17-dione, and cis-androsterone were detected at even lower concentrations (< 0.005 μg/L). There were slight differences in concentrations between the North Side WRP effluent and the North Shore Channel, indicating minimal in-stream attenuation. Fish populations are continuously exposed to mixtures of biologically-active chemicals because of the relative persistency of the chemicals with respect to stream hydraulic residence time, and the lack of a fresh water source for dilution. The majority of male fish exhibited vitellogenin induction, a physiological response consistent with exposure to estrogenic compounds. Tissue-level signs of reproductive disruption, such as ovatestis, were not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号