首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polychlorinated biphenyls (PCB) are persistent pollutants in soil environments where they continue to present considerable human health risks. Successful strategies to remediate contaminated soils are needed that are effective and of low cost. Bioremediation approaches that include the use of plants and microbial communities to promote degradation of PCB have significant potential but need further assessment under field conditions. The effects of growth of alfalfa (Medicago sativa L.) and inoculation with a symbiotic nitrogen fixing bacterium (Rhizobium meliloti) on the removal of polychlorinated biphenyls (PCB) from rhizosphere soil were evaluated in a field experiment. The initial PCB content of the soil ranged from 414 to 498 µg kg1. PCB removal for the rhizosphere soil was enhanced in the planted treatments, an average of 36% decrease in PCB levels compared to a 5.4% decrease in the unplanted soil, and further enhanced when plants were inoculated with the symbiotic Rhizobium (an average of 43% decrease) when evaluated at 90 days after planting. Plant biomass production was higher in the inoculated treatment. The total PCB content was increased from 3.30 µg kg1 to 26.72 µg kg1 in plant shoots, and from 115.07 µg kg1 to 142.23 µg kg1 in roots in the inoculated treatment compared to the planted treatment. Increased colony forming units (cfu) of total heterotrophic bacteria, biphenyl-degrading bacteria and fungi were observed in the rhizosphere of inoculated plants. PCB removal from the rhizosphere soil was not significantly correlated with the direct PCB uptake by the plants in any of the treatments but was significantly correlated with the stimulation of rhizosphere microflora. Changes in the soil microbial community structure in the planted and inoculated treatment were observed by profiling of bacterial ribosomal sequences. Some bacteria, such as Flavobacterium sp., may have contributed to the effective degradation of PCB and deserve further investigation.  相似文献   

2.
Biochemical responses in bivalve mollusks are commonly employed in environmental studies as biomarkers of aquatic contamination. The present study evaluated the possible influence of salinity (35, 25, 15 and 9 ppt) in the biomarker responses of Crassostrea gigas oysters exposed to diesel at different nominal concentrations (0.01, 0.1 and 1 mL.L− 1) using a semi-static exposure system. Salinity alone did not resulted in major changes in the gill's catalase activity (CAT), glutathione S-transferase activity (GST) and lipid peroxidation levels (measured as malondialdehyde, MDA), but influenced diesel related responses. At 25 ppt salinity, but not at the other salinity levels, oysters exposed to diesel showed a strikingly positive concentration-dependent GST response. At 25 ppt and 1 mL.L− 1 diesel, the GST activity in the gills remained elevated, even after one week of depuration in clean water. The increased MDA levels in the oysters exposed to diesel comparing to control groups at 9, 15 and 35 ppt salinities suggest the occurrence of lipid peroxidation in those salinities, but not at 25 ppt salinity. The MDA quickly returned to basal levels after 24 h of depuration. CAT activity was unaltered by the treatments employed. High toxicity for 1 mL.L− 1 diesel was observed only at 35 ppt salinity, but not in the other salinities. Results from this study strongly suggest that salinity influences the diesel related biomarker responses and toxicity in C. gigas, and that some of those responses remain altered even after depuration.  相似文献   

3.
Diesel fuel contamination in soils may be toxic to soil microorganisms and plants and acts as a source of groundwater contamination. The objective of this study was to evaluate the soil biological activity and phytotoxicity to garden cress (Lepidium sativum L.) in a soil polluted with diesel fuel. For this, a diesel fuel spill was simulated on agricultural soil at dose 1 l m− 2. During the experiment (400 days) the soil was not covered in vegetation and no agricultural tasks were carried out. A stress period of 18 days following the spill led to a decrease in soil biological activity, reflected by the soil microbial biomass and soil enzymatic activities, after which it increased again. The n-C17/Pristine and n-C18/Phytane ratios were correlated negatively and significantly with the dehydrogenase, arylsulphatase, protease, phosphatase and urease activities and with the soil microbial biomass during the course of the experiment. The β-glucosidase activity indicated no significant connection with the parameters related with the evolution of hydrocarbons in the soil. Finally, the germination activity of the soil was seen to recover 200 days after the spill.  相似文献   

4.
Rhizosphere acidification of faba bean, soybean and maize   总被引:2,自引:0,他引:2  
Interspecific facilitation on phosphorus uptake was observed in faba bean/maize intercropping systems in previous studies. The mechanism behind this, however, remained unknown. Under nitrate supply, the difference in rhizosphere acidification potential was studied by directly measuring pH of the solution and by visualizing and quantifying proton efflux of roots between faba bean (Vicia faba L. cv. Lincan No.5), soybean (Glycine max L. cv. Zhonghuang No. 17) and maize (Zea mays L. cv. Zhongdan No.2) in monoculture and intercrop, supplied without or with 0.2 mmol L− 1 P as KH2PO4. The pH of the nutrient solution grown faba bean was lower than initial pH of 6.0 from day 1 to day 22 under P deficiency, whereas the pH of the solution with maize was declined from day 13 after treatment. Growing soybean increased solution pH irrespective of P supply. Under P deficiency, the proton efflux of faba bean both total (315.25 nmol h− 1 plant− 1) and specific proton efflux (0.47 nmol h− 1 cm− 1) was greater than that those of soybean (21.80 nmol h− 1 plant− 1 and 0.05 nmol h− 1 cm− 1, respectively). Faba bean had much more ability of rhizosphere acidification than soybean and maize. The result can explain partly why faba bean utilizes sparingly soluble P more effectively than soybean and maize do, and has an important implication in understanding the mechanism behind interspecific facilitation on P uptake by intercropped species.  相似文献   

5.
The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing ∼ 130 μg l− 1 As and two control sites irrigated with water containing < 15 μg l− 1 As. At both sites irrigated with contaminated water, As concentrations in soil water increased from < 10 μg l− 1 to > 1000 μg l− 1 during the first five weeks of the growth season and then gradually declined to < 10 μg l− 1 during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40 µg l− 1. At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500 mg kg− 1 towards the middle of the growth season. It then declined to ∼ 300 mg kg− 1 towards the end, a level still well above As concentration of ∼ 100 mg kg− 1 in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significantly limits the uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, needs to be better understood because they are likely to influence the uptake of As in rice grains.  相似文献   

6.
The plot-culture experiments were conducted for examining the feasibility of Pharbitis nil L. and its microbial community to remedy petroleum contaminated soils. The petroleum contaminated soil, containing 10% (w/w) of the total petroleum hydrocarbons (TPHs), was collected from the Shengli Oil Field, Dongying City, Shandong Province, China. The collected soil was applied and diluted to a series of petroleum contaminated soils (0.5%, 1.0%, 2.0% and 4.0%). Root length, microbial populations and numbers in the rhizosphere were also measured in this work. The results showed that there was significantly (p < 0.05) greater degradation rate of TPHs in vegetated treatments, up to 27.63-67.42%, compared with the unvegetated controls (only 10.20-35.61%), after a 127-day incubation. Although various fractions of TPHs had an insignificant concentration difference due to the presence of the remediation plants, there was a much higher removal of saturated hydrocarbon compared with other components. The biomass of P. nil L. did not decrease significantly when the concentration of petroleum hydrocarbons in soil was ≤ 2.0%. The trends of microbial populations and numbers in the rhizosphere were similar to the biomass changes, with the exception that fungi at 0.5% petroleum contaminated soil had the largest microbial populations and numbers.  相似文献   

7.
Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 µg cm2 d− 1) than from the biocide leaching leisure boat paint (1.1 µg cm2 d− 1). Biocide-free paints did leach considerably more Zn (4.4-8.2 µg cm2 d− 1) than biocide-containing leisure boat paint (3.0 µg cm2 d− 1) and ship paints (0.7-2.0 µg cm2 d− 1). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC50 = 6.4 µg l− 1) and Zn (EC50 = 25 µg l− 1) compared to the crustacean (Cu, LC50 = 2000 µg l− 1 Zn, LC50 = 890 µg l− 1), and the bacteria (Cu, EC50 = 800 µg l− 1 and Zn, EC50 = 2000 µg l− 1). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.  相似文献   

8.
Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg− 1 in studies with NG freshly amended in soil, and from 23 to 185 mg kg− 1 in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.  相似文献   

9.
Chang CW  Chang WL  Chang ST 《Water research》2008,42(20):5022-5030
Cinnamon oil extracted from leaves of Cinnamomum osmophloeum has recently been proved as a promising antibacterial agent against Legionella pneumophila, an etiological agent of human pneumonia known as Legionnaires' disease. However, the pH effects on the efficacy of cinnamon oil against L. pneumophila and its applicability to recreational spring water remain unknown. We therefore determined the bactericidal activity of cinnamon oil at pH 3-10 in phosphate-buffered saline (PBS) and in four kinds of springs with various conductivity (259-5595 μs cm−1) and pH (2.1-7.7) levels. Results show L. pneumophila cells were more susceptible to cinnamon oil at pH 8-10 than at pH 4-6 in PBS, which became more evident as increasing contact time from 10 to 60 min. An increase in concentration of cinnamon oil and contact time significantly increased the anti-L. pneumophila activity (P ≤ 0.001), indicating a consistent biocidal effect regardless of pH. Interestingly, this dose-response biocidal effect was also observed in spring waters. Moreover, L. pneumophila of 4 log CFU ml−1 in spring waters was completely inactivated within 60 min by cinnamon oil at 300-750 μg ml−1, with the highest inactivation in alkaline hydrogen carbonate spring. The great bioactivity of cinnamon oil demonstrates its potential to be used to control Legionella growth in recreational spring water and possibly other niches generally at basic pH, e.g., cooling towers.  相似文献   

10.
Polychlorinated biphenyls (PCBs) and organochlorine pesticides like dichloro-diphenyl-trichloroethane (DDTs), hexachlorocyclohexanes (HCHs), aldrin, dieldrin and trace elements (Cd, Cu, Se, Pb, Zn and Hg) were analysed in the muscle of European sea bass (Dicentrarchus labrax) sampled in Atlantic coastal regions near several important European river mouths (Gironde, Charente, Loire, Seine and Scheldt). High contamination levels were measured in the muscles of European sea bass sampled in the coastal regions near those river mouths (e.g. Σ ICES PCB = 133-10,478 μg kg− 1 lw and Hg = 250-2000 μg kg− 1 dw).The Scheldt and the Seine are still among the most contaminated estuaries in Europe. Each region presented their specific contamination patterns reflecting different sources due to the input of the respective rivers. As fish and fishery products are the main contributors of the total dietary intake of organochlorinated pollutants, regular consumption of European sea bass with the reported contamination levels may represent a significant exposure route for the general human population.  相似文献   

11.
Soil cores and rainwater were sampled under canopies of Cryptomeria japonica in four montane areas along an atmospheric depositional gradient in Kanto, Japan. Soil cores (30 cm in depth) were divided into 2-cm or 4-cm segments for analysis. Vertical distributions of elemental enrichment ratios in soils were calculated as follows: (X/Al)i/(X/Al)BG (where the numerator and denominator are concentration ratios of element-X and Al in the i- and bottom segments of soil cores, respectively). The upper 14-cm soil layer showed higher levels of Cu, Zn, As, Sb, and Pb than the lower (14-30 cm) soil layer. In the four areas, the average enrichment ratios in the upper 6-cm soil layer were as follows: Pb (4.93) ≥ Sb (4.06) ≥ As (3.04) > Zn (1.71) ≥ Cu (1.56). Exogenous elements (kg/ha) accumulated in the upper 14-cm soil layer were as follows: Zn (26.0) > Pb (12.4) > Cu (4.48) ≥ As (3.43) ≥ Sb (0.49). These rank orders were consistent with those of elements in anthropogenic aerosols and polluted (roadside) air, respectively, indicating that air pollutants probably caused enrichment of these elements in the soil surface layer. Approximately half of the total concentrations of As, Sb, and Pb in the upper 14-cm soil layer were derived from exogenous (anthropogenic) sources. Sb showed the highest enrichment factor in anthropogenic aerosols, and shows similar deposition behavior to NO3, which is a typical acidic air pollutant. There was a strong correlation between Sb and NO3 concentrations in rainfall (e.g., in the throughfall under C. japonica: [NO3] = 21.1 [dissolved Sb], r = 0.938, p < 0.0001, n = 182). Using this correlation, total (cumulative) inputs of NO3 were estimated from the accumulated amounts of exogenous Sb in soils, i.e., 16.7 t/ha at Mt. Kinsyo (most polluted), 8.6 t/ha at Mt. Tsukuba (moderately polluted), and 5.8 t/ha at the Taga mountain system (least polluted). There are no visible ecological effects of these accumulated elements in the Kanto region at present. However, the concentrations of some elements are within a harmful range, according to the Ecological Soil Screening Levels determined by the U.S. Environmental Protection Agency.  相似文献   

12.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

13.
Managed Aquifer Recharge (MAR) is becoming an attractive option for water storage in water reuse processes as it provides an additional treatment barrier to improve recharged water quality and buffers seasonal variations of water supply and demand. To achieve a better understanding about the level of pathogenic microorganisms and their relation with microbial indicators in these systems, five waterborne pathogens and four microbial indicators were monitored over one year in three European MAR sites operated with reclaimed wastewater. Giardia and Cryptosporidium (oo)cysts were found in 63.2 and 36.7% of the samples respectively. Salmonella spp. and helminth eggs were more rarely detected (16.3% and 12.5% of the samples respectively) and Campylobacter cells were only found in 2% of samples. At the Belgian site advanced tertiary treatment technology prior to soil aquifer treatment (SAT) produced effluent of drinking water quality, with no presence of the analysed pathogens. At the Spanish and Italian sites amelioration of microbiological water quality was observed between the MAR injectant and the recovered water. In particular Giardia levels decreased from 0.24-6.14 cysts/L to 0-0.01 cysts/L and from 0.4-6.2 cysts/L to 0-0.07 cysts/L in the Spanish and Italian sites respectively. Salmonella gene copies and Giardia cysts were however found in the water for final use and/or the recovered groundwater water at the two sites. Significant positive Spearman correlations (p < 0.05, rs range: 0.45-0.95) were obtained, in all the three sites, between Giardia cysts and the most resistant microbial markers, Clostridium spores and bacteriophages.  相似文献   

14.
The effects of insect defoliators on throughfall and soil nutrient fluxes were studied in coniferous and deciduous stands at five UK intensive monitoring plots (1998 to 2008). Links were found between the dissolved organic carbon (DOC), nitrogen (N) and potassium (K) fluxes through the forest system to biological activity within the canopy. Underlying soil type determined the leaching or accumulation of these elements. Under oak, monitored at two sites, frass from caterpillars of Tortrix viridana and Operophtera brumata added direct deposition of ~ 16 kg ha−1extra N during defoliation. Peaks of nitrate (NO3-N) flux between 5 and 9 kg ha−1 (×5 usual winter values) were recorded in consecutive years in shallow soil waters. Synchronous rises in deep soil NO3-N fluxes at the Grizedale sandy site indicate downward flushing, not seen at the clay site. Under three Sitka spruce stands, generation of honeydew (DOC) was attributed to two aphid species (Elatobium abietinum and Cinara pilicornis) with distinctive feeding strategies. Throughfall DOC showed mean annual fluxes (6 seasons) ~ 45-60 kg ha−1 compared with rainfall values of 14-22 kg ha−1. Increases of total N in throughfall and NO3-N fluxes in shallow soil solution were detected — soil water fluxes reached  8 kg ha−1 in Llyn Brianne, ~ 25 kg ha−1 in Tummel, and ~ 40 kg NO3-N ha−1 in Coalburn. At Tummel, on sandy soil, NO3-N leaching showed increased concentration at depth, attributed to microbiological activity within the soil. By contrast, at Coalburn and Llyn Brianne, sites on peaty gleys, soil water NO3-N was retained mostly within the humus layer. Soil type is thus key to predicting N movement and retention patterns. These long term analyses show important direct and indirect effects of phytophagous insects in forest ecosystems, on above and below ground processes affecting tree growth, soil condition, vegetation and water quality.  相似文献   

15.
Microcystis aeruginosa has quickly risen in infamy as one of the most universal and toxic bloom-forming cyanobacteria. Here we presented a species of golden alga (Poterioochromonas sp. strain ZX1), which can feed on toxic M. aeruginosa without any adverse effects from the cyanotoxins. Using flow cytometry, the ingestion and maximal digestion rates were estimated to be 0.2∼1.2 and 0.2 M. aeruginosa cells (ZX1 cell)−1 h−1, respectively. M. aeruginosa in densities below 107 cells mL−1 could be grazed down by ZX1, but no significant decrease was observed when the initial density was 3.2 × 107 cells mL−1. ZX1 grazing was a little influenced by the light intensity (0.5∼2500 lx) and initial pH of the medium (pH = 5.0∼9.5). ZX1 could not survive in continuous darkness for longer than 10 days. The pH value was adjusted to 8 by ZX1 while to 10 by M. aeruginosa. This study may shed light on understanding the ecological interactions between M. aeruginosa and mixotrophic Poterioochromonas sp. in aquatic ecosystems.  相似文献   

16.
Electrokinetic remediation has been successfully used to remove organic contaminants and heavy metals within soil. The electrokinetic process changes basic soil properties, but little is known about the impact of this remediation technology on indigenous soil microbial activities. This study reports on the effects of electrokinetic remediation on indigenous microbial activity and community within diesel contaminated soil. The main removal mechanism of diesel was electroosmosis and most of the bacteria were transported by electroosmosis. After 25 days of electrokinetic remediation (0.63 mA cm− 2), soil pH developed from pH 3.5 near the anode to pH 10.8 near the cathode. The soil pH change by electrokinetics reduced microbial cell number and microbial diversity. Especially the number of culturable bacteria decreased significantly and only Bacillus and strains in Bacillales were found as culturable bacteria. The use of EDTA as an electrolyte seemed to have detrimental effects on the soil microbial activity, particularly in the soil near the cathode. On the other hand, the soil dehydrogenase activity was enhanced close to the anode and the analysis of microbial community structure showed the increase of several microbial populations after electrokinetics. It is thought that the main causes of changes in microbial activities were soil pH and direct electric current. The results described here suggest that the application of electrokinetics can be a promising soil remediation technology if soil parameters, electric current, and electrolyte are suitably controlled based on the understanding of interaction between electrokinetics, contaminants, and indigenous microbial community.  相似文献   

17.
Gradients in phosphorus (P) removal and storage were investigated over 6 years using mesocosms (each consisting of three tanks in series) containing submerged aquatic vegetation (SAV) grown on muck and limerock (LR) substrates. Mean inflow total P concentrations (TP) of 32 μg L−1 were reduced to 15 and 17 μg L−1 in the muck and LR mesocosms, respectively. Mesocosm P loading rates (mean = 1.75 g m−2 year−1) varied widely during the study and were not correlated with outflow TP, which instead varied seasonally with lowest monthly mean values in December and January.The mesocosms initially were stocked with Najas guadalupensis, Ceratophyllum demersum, and Chara zeylanica, but became dominated by C. zeylanica. At the end of the study, highest vegetative biomass (1.1 and 1.4 kg m−2 for muck and LR substrates) and tissue P content (1775 and 1160 mg kg−1) occurred in the first tank in series, and lowest biomass (1.0 and 0.2 kg m−2) and tissue P (147 and 120 mg kg−1) in the third tank. Sediment accretion rates (2.5, 1.9 and 0.9 cm yr−1 on muck substrates), accrued sediment TP (378, 309 and 272 mg kg−1), and porewater soluble reactive P (SRP) concentrations (40, 6 and 4 μg L−1) in the first, second and third tanks, respectively, exhibited a similar decreasing spatial trend. Plant tissue calcium (Ca) near mesocosm inflow (19-30% dry weight) and outflow (23-26%) were not significantly different, and sediment Ca was also similar (range of 24 to 28%) among sequential tanks.Well-defined vegetation and sediment enrichment gradients developed in SAV wetlands operated under low TP conditions. While the mesocosm data did not reflect deterioration in treatment performance over 6 years, accumulation of P-enriched sediments near the inflow could eventually compromise hydraulic storage and P removal effectiveness of these shallow systems.  相似文献   

18.
The status of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate δ15N and δ18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas: high nitrate contamination was observed in Jakarta (dry fields), and relatively lower nutrients consisting mainly of ammonium were detected in Bangkok (paddy fields).The exponential increase in NO3-δ15N along with the NO3 reduction and clear δ18O/δ15N slopes of NO3 (∼ 0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer NO3 contamination via active denitrification and reduced nitrification.Our results showed that NO3 and NH4+ contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas, and this information should be shared among adjacent countries with similar geographic and cultural settings.  相似文献   

19.
A mercury-cell chlor-alkali plant operated in Estarreja (North-western Portugal) for 50 years causing widespread environmental contamination. Although production by this process ceased in 2002, mercury contamination from the plant remains significant. The main objective of this study was to investigate mercury impact on the nearby environment and potential risks to local population. To assess the level of contamination soil samples were collected from agricultural fields in the vicinity of the plant, extending the study by taking samples of the predominant vegetation suitable for animal and human consumption, water samples, and fish species from a nearby coastal lagoon, to gain a preliminary insight into the potential for contamination of the terrestrial and aquatic food web. To determine population exposure to mercury, hair samples were collected from local residents. Total mercury concentration in the 0-15 cm layer of soil was found to be highly variable, ranging between 0.010 and 91 mg kg− 1, although mercury contamination of soils was found to be restricted to a confined area. Lolium perenne roots contained between 0.0070 and 2.0 mg kg− 1, and there is evidence that root systems uptake mercury from the soil. Levels of mercury in the aerial parts of plants ranged between 0.018 and 0.98 mg kg− 1. It appears that plants with higher mercury concentration in soils and roots also display higher mercury concentration in leaves.Total mercury concentration in water samples ranged between 12 and 846 ng L− 1, all samples presenting concentrations below the maximum level allowable for drinking water defined in the Portuguese law (1.0 μg L− 1).Mercury levels in fish samples were below the maximum limit defined in the Portuguese law (0.5 mg kg− 1), ranging from 0.0040 to 0.24 mg kg− 1. Vegetables collected presented maximum mercury concentration of 0.17 mg kg− 1. In general, food is not contaminated and should not be responsible for major human exposure to the metal.Mercury determined in human hair samples (0.090-4.2 mg kg− 1; mean 1.5 mg kg− 1) can be considered within normal limits, according to WHO guidelines suggesting that it is not affecting the local population. Despite being subject to decades of mercury emissions, nowadays this pollutant is only found in limited small areas and must not constitute a risk for human health, should these areas be restricted and monitored.Considering the present data, it appears that the population from Estarreja is currently not being affected by mercury levels that still remain in the environment.  相似文献   

20.
In the present study the degradation kinetics and mineralization of diclofenac (DCF) by the TiO2 photocatalysis were investigated in terms of UV absorbance and COD measurements for a wide range of initial DCF concentrations (5-80 mg L−1) and photocatalyst loadings (0.2-1.6 g TiO2 L−1) in a batch reactor system. A set of bioassays (Daphnia magna, Pseudokirchneriella subcapitata and Artemia salina) was performed to evaluate the potential detoxification of DCF. A pseudo-first-order kinetic model was found to fit well most of the experimental data, while at high initial DCF concentrations (40 and 80 mg L−1) and at 1.6 g TiO2 L−1 photocatalyst loading a second-order kinetic model was found to fit the data better. The toxicity of the treated DCF samples on D. magna and P. subcapitata varied during the oxidation, probably due to the formation of some intermediate products more toxic than DCF. Unicellular freshwater algae was found to be very sensitive to the treated samples as well as the results from D. magna test were consistent to those of algae tests. A. salina was not found to be sensitive under the investigated conditions. Finally, UV absorbance analysis were found to be an useful tool for a fast and easy to perform measurement to get preliminary information on the organic intermediates that are formed during oxidation and also on their disappearance rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号