首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A composite material formed by dispersing ultrasmall silicon nanoparticles in polyaniline has been used as the electrode material for supercapacitors. Electrochemical characterization of the composite indicates that the nanoparticles give rise to double-layer capacitance while polyaniline produces pseudocapacitance. The composite shows significantly improved capacitance compared to that of polyaniline. The enhanced capacitance results in high power (220 kW kg−1) and energy-storage (30 Wh kg−1) capabilities of the composite material. A prototype supercapacitor using the composite as the charge storage material has been constructed. The capacitor showed the enhanced capacitance and good device stability during 1000 charging/discharging cycles.  相似文献   

2.
Chemically prepared polyaniline is tested for its supercapacitive behaviour in an aqueous electrolyte of 1.0 M H2SO4. In order to improve the cycleability of the polyaniline electrode, it is made into a composite with Nafion. This composite electrode shows improved cycleability and higher specific capacitance compared with a pure polyaniline electrode. It is therefore used as a matrix for the electrochemical deposition of hydrous RuO2. The resulting ternary composite electrode has a high specific capacitance of 475 F g−1 at 100 mV s−1 and 375 F g−1 at 1000 mV s−1 in the voltage range of −0.2 to 0.8 V versus Ag/AgCl. All three types of electrode are characterized by cyclic voltammetry and impedance anaylsis.  相似文献   

3.
Nanosized Ni3(Fe(CN)6)2(H2O) was prepared by a simple co-precipitation method. The electrochemical properties of the sample as the electrode material for supercapacitor were studied by cyclic voltammetry (CV), constant charge/discharge tests and electrochemical impedance spectroscopy (EIS). A specific capacitance of 574.7 F g−1 was obtained at the current density of 0.2 A g−1 in the potential range from 0.3 V to 0.6 V in 1 M KNO3 electrolyte. Approximately 87.46% of specific discharge capacitance was remained at the current density of 1.4 A g−1 after 1000 cycles.  相似文献   

4.
Polypyrrole/carbon aerogel composite materials for supercapacitor   总被引:1,自引:0,他引:1  
Polypyrrole (PPy)/carbon aerogel (CA) composite materials with different PPy contents are prepared by chemical oxidation polymerization through ultrasound irradiation and are used as active electrode material for supercapacitor. The morphology of PPy/CA composite is examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that PPy is deposited onto the surface of CA. As evidenced by cyclic voltammetry, galvanostatic charge/discharge test and EIS measurements, PPy/CA composites show superior capacitive performances to CA, moreover, the results based on cyclic voltammograms show that the composite material has a high specific capacitance of 433 F g−1, while the capacitance of CA electrode is only 174 F g−1. Although the supercapacitor used PPy/CA as active electrode material has an initial capacitance loss due to the instability of PPy, the specific capacitance after 500 cycles stabilizes nearly at a fixed value.  相似文献   

5.
Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm−1 at 25 °C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H2SO4 aqueous solution. Its initial specific capacitance was 500 F g−1 at a constant current density of 1.5 A g−1, and the capacitance still reached about 400 F g−1 after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g−1, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors.  相似文献   

6.
Electrochemical power sources that offer high energy and power densities and, can also withstand a harsh temperature range have become extremely desirable in applications ranging from civilian portable electronic devices to military weapons. In this report, we demonstrated a wide temperature withstanding supercapacitor which can be operated from 100 °C to −40 °C within a voltage window from −2 V to 2 V. The performance of the supercapacitor coin cells, assembled with nanostructured activated carbon fabric (ACF) as the electrode material and 1 M tetraethylammonium tetrafluoroborate (TEABF4) in polypropylene carbonate (PC) solution as the electrolyte, was systematically studied within the set temperature window. The ACF supercapacitor yielded ideal rectangular shapes in cyclic voltammograms within 0-100 °C with an average mass capacitance of 90 F g−1 and, 60 F g−1 at −25 °C. The capacitance was still over 20 F g−1 at the extremely low temperature of −40 °C. Another exciting feature of the ACF supercapacitors was that they resumed their room temperature capacitance when cooled from 100 °C and defrosted from −40 °C, demonstrating an excellent repeatability and stability. The charge-discharge behavior of the ACF supercapacitors showed long-cycle stability at extreme temperatures. These high electrochemical performances make this type of supercapacitors very promising in many practical applications.  相似文献   

7.
Vertically aligned polyaniline nanowhiskers (PANI-NWs) doped with (1R)-(−)-10-Camphorsulfonic acid (L-CSA) have been successfully synthesized on the external surface of ordered mesoporous carbon (CMK-3) by chemical oxidative polymerization. The specific surface area of the PANI-NWs/CMK-3 nanocomposite remains as high as 497 m2 g−1 by removing mesoporous silica template after the polymerization of aniline. Structural and morphological characterizations of the nanocomposite were further investigated by XRD, FTIR and FE-SEM measurements. The result shows that the nanocomposite with 40 wt% PANI applying in supercapacitor devices possesses a large specific capacitance of 470 F g−1 and good capacitance retention of 90.4% is achieved after 1000 cycles at a current density of 1.0 A g−1. The synergistic effect of small PANI nanowhisker arrays and well-ordered mesoporous carbon endows the composite with high electrochemical capacitance and good cycling stability.  相似文献   

8.
Flexible supercapacitor is successfully fabricated using polyaniline nanowires/carbon cloth (PANI-NWs/CC) nanocomposite. High gravimetric capacitance of 1079 F g−1 at a specific energy of 100.9 Wh kg−1 and a specific power of 12.1 kW kg−1 is obtained. Moreover, this approach also offers an exceptionally high area-normalized capacitance of 1.8 F cm−2. The diffusion length of protons within the PANI-NWs is estimated to be about 60 nm by electrochemical impedance analysis, which indicates that the electrochemical performance of the electrode is not limited by the thickness of PANI-NWs. The electrochemical performance of PANI-NWS/CC remains without any deterioration, even when the cell is bent under high curvature. These results clearly present a cost-effective and simple method of fabrication of the nanostructured polymers with enormous potential in flexible energy storage device applications.  相似文献   

9.
Graphene nanosheets (GNs) dispersed with SnO2 nanoparticles loaded multiwalled carbon nanotubes (SnO2-MWCNTs) were investigated as electrode materials for supercapacitors. SnO2-MWCNTs were obtained by a chemical method followed by calcination. GNs/SnO2-MWCNTs nanocomposites were prepared by ultrasonication of the GNs and SnO2-MWCNTs. Electrochemical double layer capacitors were fabricated using the composite as the electrode material and aqueous KOH as the electrolyte. Electrochemical performance of the composite electrodes were compared to that of pure GNs electrodes and the results are discussed. Electrochemical measurements show that the maximum specific capacitance, power density and energy density obtained for supercapacitor using GNs/SnO2-MWCNTs nanocomposite electrodes were respectively 224 F g−1, 17.6 kW kg−1 and 31 Wh kg−1. The fabricated supercapacitor device exhibited excellent cycle life with ∼81% of the initial specific capacitance retained after 6000 cycles. The results suggest that the hybrid composite is a promising supercapacitor electrode material.  相似文献   

10.
In the past decades, nickel and cobalt oxide/hydroxide materials have been investigated intensively for supercapacitor applications. Some works report very high specific capacitance values, up to 3152 F g−1, for these materials. By contrast, some other works report quite modest capacitance values, up to 380 F g−1 for the same materials prepared using same strategy. It is found that most works reporting very high capacitance value applied nickel foam as current collector. In this paper, surface chemistry and electrochemical properties of nickel foam are investigated by XPS analysis, cyclic voltammetry and galvanostatic charge-discharge measurement. The results show that using nickel foam as current collector can bring about substantial errors to the specific capacitance values of electrode materials, especially when small amount of electrode active material is used in the measurement. It is suggested that an electrochemically inert current collector such as Ti or Pt film should be used for testing electrochemical properties of nickel and cobalt oxide/hydroxide positive electrode materials.  相似文献   

11.
This is the first report about supercapacitive performance of hybrid film of manganese dioxide (MnO2) and polyaniline (PANI) in an organic electrolyte (1.0 M LiClO4 in acetonitrile). In this work, a high surface area and conductivity of active carbon (AC) electrode is used as a substrate for PANI/MnO2 film electro-codeposition. The redox properties of the coated PANI/MnO2 thin film exhibit ideal capacitive behaviour in 1 M LiClO4/AN. The specific capacitance (SC) of PANI/MnO2 hybrid film is as high as 1292 F g−1 and maintains about 82% of the initial capacitance after 1500 cycles at a current density of 4.0 mA cm−2, and the coulombic efficiency (η) is higher than 95%. An asymmetric capacitor has been developed with the PANI/MnO2/AC positive and pure AC negative electrodes, which is able to deliver a specific energy as high as 61 Wh kg−1 at a specific power of 172 W kg−1 in the range of 0-2.0 V. These results indicate that the organic electrolyte is a promising candidate for PANI/MnO2 material application in supercapacitors.  相似文献   

12.
Amphiphilic carbonaceous material (ACM), with nanoscale dispersion in alkaline aqueous solutions, is synthesized from green needle coke. As a special precursor with small particle size, plenty of functional groups and widened d002 simultaneously, ACM guarantees subsequent ACM-based activated carbons (AACs) with high specific surface area over 3000 m2 g−1 as well as well-developed mesoporous structure after KOH activation. Such pore properties enable AACs’ high performances as electrode materials for electric double-layer capacitors (EDLCs). In particular, surface area up to 3347 m2 g−1 together with notable mesopore proportion (26.9%) gives sample AAC814 outstanding EDLC behaviors during a series of electrochemical tests including galvanostatic charge/discharge, CV and electrochemical impedance spectroscopy. The electrode gets satisfactory gravimetric and volumetric specific capacitance at the current density of 50 mA g−1, up to 348 F g−1 and 162 F cm−3, respectively. Furthermore, for the mesoporosity, there is only a slight capacitance reduction for AAC814 as the current density reaches 1000 mA g−1, indicating its good rate performance. It is all the ACM's unique characteristics that make AACs a sort of competitive EDLC electrode materials, both in terms of specific capacitance and rate capability.  相似文献   

13.
Carbon-supported MnO2 nanorods are synthesized using a microemulsion process and a manganese oxide/carbon (MnO2/C) composite is investigated for use in a supercapacitor. As shown by high-resolution transmission electron microscopy the 2 nm × 10 nm MnO2 nanorods are uniformly dispersed on the carbon surface. Cyclic voltammograms recorded for the MnO2/C composite electrode display ideal capacitive behaviour between −0.1 and 0.8 V (vs. saturated calomel electrode) with high reversibility. The specific capacitance of the MnO2/C composite electrode found to be 165 F g−1 and is estimated to be as high as 458 F g−1 for the MnO2. Based on cyclic voltammetric life-cycle tests, the MnO2/C composite electrode gives a highly stable and reversible performance for up to 10,000 cycles.  相似文献   

14.
Nanoscale carbon-coated Li2MnSiO4 powder is prepared using a conventional solid-state method and can be used as the negative electrode in a Li2MnSiO4/activated carbon (AC) hybrid supercapacitor. Carbon-coated Li2MnSiO4 material presents a well-developed orthorhombic crystal structure with a Pmn21 space group, although there is a small impurity of MnO. The maximum specific capacitance of the Li2MnSiO4/AC hybrid supercapacitor is 43.2 F g−1 at 1 mA cm−2 current density. The cell delivers a specific energy as high as 54 Wh kg−1 at a specific power of 150 W kg−1 and also exhibits an excellent cycle performance with more than 99% columbic efficiency and the maintenance of 85% of its initial capacitance after 1000 cycles.  相似文献   

15.
Nano-size (≤100 nm) TiP2O7 is prepared by the urea assisted combustion synthesis, at 450 and 900 °C. The compound is characterized by powder X-ray diffraction, Rietveld refinement, high resolution transmission electron microscopy and surface area methods. Lithium cycling properties by way of galvanostatic cycling and cyclic voltammetry (CV) showed a reversible and stable capacity of 60 (±3) mAh g−1 (0.5 mole of Li) up to 100 cycles, when cycled at 15 mA g−1 between 2-3.4 V vs. Li. Non-aqueous hybrid supercapacitor, TiP2O7 (as anode) and activated carbon (AC) (as cathode) has been studied by galvanostatic cycling and CV in the range, 0-3 V at 31 mA g−1 and exhibited a specific discharge capacitance of 29 (±1) F g−1stable in the range, 100-500 cycles. The Ragone plot shows a deliverable maximum of 13 Wh kg−1 and 371 W kg−1 energy and power density, respectively.  相似文献   

16.
This paper presents results about the electrochemical and cycling characterizations of a supercapacitor cell using a microporous activated carbon as the active material and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) ionic liquid as the electrolyte. The microporous activated carbon exhibited a specific capacitance of 60 F g−1 measured from the three-electrode cyclic voltammetry experiments at 20 mV s−1 scan rate, with a maximum operating potential range of 4.5 V at 60 °C. A coin cell assembled with this microporous activated carbon and PYR14TFSI as the electrolyte was cycled for 40,000 cycles without any change of cell resistance (9 Ω cm2), at a voltage up to 3.5 V at 60 °C, demonstrating a high cycling stability as well as a high stable specific capacitance in this ionic liquid electrolyte. These high performances make now this type of supercapacitor suitable for high temperature applications (≥60 °C).  相似文献   

17.
Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g−1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s−1 in 1 M H2SO4 solution compared to 402 F g−1 for pure PANI and 270 F g−1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices.  相似文献   

18.
Electrochemical properties of activated ordered mesoporous carbon (OMC) containing nickel inclusions are investigated using cyclic voltammetry and galvanostatic charge/discharge techniques. The hard-template-route prepared OMC is of structurally well-ordered two-dimensional hexagonal structure with a high specific surface area of 1896.95 cm2 g−1, a pore volume of 1.781 cm3 g−1 and a pore size of 5.1 nm, respectively. It is shown that OMC/0.3Ni electrode displays the highest specific capacitance of 186.1 Fg−1, almost 1.4 times higher than that of pure OMC electrode. The hydrogen storage capacity of pure OMC electrode is 87 mAh g−1 and there exists no discharge platform. With the amount of nickel addition increasing, there appears a relatively stable discharge platform, and the discharge capacity reaches a maximum of 170 mAh g−1 as the molar ratio of Ni:OMC is 0.3, almost two times higher than that of pure OMC electrode. The electrochemical properties of OMC can be greatly improved with incorporation of nickel powders. The Ni activated OMC electrodes display a high capacity retainability with strong resistance against oxidation and corrosion.  相似文献   

19.
A novel doped activated carbon has been prepared from H2SO4-doped polyaniline which is prepared by the oxypolymerization of aniline. The morphology, surface chemical composition and surface area of the carbon have been investigated by scanning electron microscope, X-ray photoelectron spectroscopy and Brunaner-Emmett-Teller measurement, respectively. Electrochemical properties of the doped activated carbon have been studied by cyclic voltammograms, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements in 6 mol l−1 KOH. The specific capacitance of the carbon is as high as 235 F g−1, the specific capacitance hardly decreases at a high current density 11 A g−1 after 10,000 cycles, which indicates that the carbon possesses excellent cycle durability and may be a promising candidate for supercapacitors.  相似文献   

20.
With manganese dioxide (MnO2) as the oxidant, perfluorinated sulfonic acid ion exchange resin (Nafion) as the doping agent and emulsifier, Nafion doped polyaniline (PANI-Nafion) was prepared by emulsion polymerization method. Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out to characterize the structure and morphology of PANI-Nafion. Symmetric redox supercapacitor was assembled with PANI-Nafion as active electrode material and 1.0 mol L−1 H2SO4 aqueous solution as electrolyte. The electrochemical characteristics of these supercapacitors were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. These results show that the diameter of PANI-Nafion nanofiber is about 30 ∼ 40 nm and the pores between PANI-Nafion composite materials are distributed uniformly. The specific capacitance of PANI-Nafion electrode is about 385.3 F g−1, which is higher than that of undoped PANI (235.8 F g−1). After 1000 charge/discharge cycles the specific capacitance of PANI-Nafion electrode is 272.4 F g−1, its capacity retention is 70.7%, which is significantly better than that of PANI electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号