首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
水平井钻井中时常遇到摩阻高、托压、钻速低的问题,而水力振荡器是解决这类问题的有效手段之一,由于常规钻柱摩阻预测无法考虑水力振荡器影响,对水力振荡器的最佳安放位置仍然存在争议。为此,考虑水力振荡器产生轴向振动的影响,基于Dahl动态摩擦模型和常规刚杆模型建立了钻柱动态摩阻计算模型,并以井口实测的大钩载荷验证了该模型的准确性,分析了水平井摩阻分布特征和规律,并优化了水力振荡器的安放位置,最后开展现场验证试验。结果表明,钻柱动态摩阻计算模型计算得到的大钩载荷与实测数据一致性好、精度高,最大误差13. 19%,平均误差仅4. 90%;苏里格气田试验区水平井斜井段的最佳安放位置距离钻头60~80 m,水平井段的最佳安放位置距离钻头60~100 m;现场试验结果表明,斜井段械钻速提高了39. 01%,水平段机械钻速提高了41. 57%,提速效果明显。  相似文献   

2.
塔里木盆地塔中地区奥陶系缝洞型碳酸盐岩储层非均质性强、连续性差,为同时钻遇多个缝洞单元,钻井方式以超深水平井为主,水平段长度通常介于800~1 400 m。水平段长度主要由钻井过程中的井下摩阻决定,随着水平段的延伸,越来越大的井下摩阻会带来机械钻速减慢,起下钻困难等问题。当水平段超过800 m后,滑动钻进时托压现象非常严重,导致滑动机械钻速很低,同时也增加了卡钻的风险。针对这一问题,采用水力振荡器,并运用三维管柱力学分析确定水力振荡器最佳安放位置。现场应用结果表明:(1)通过水力振荡器自身产生的轴向震动减小井下摩阻,有效解决了钻进过程中托压、黏卡等问题;(2)使用水力振荡器的井平均机械钻速比未使用水力振荡器邻井的机械钻速提高了67%,缩短了钻井周期,降低了钻井风险,节约了钻井成本。在塔中地区实际应用的效果表明:水力振荡器在长水平井段钻井中具有较高的推广价值。  相似文献   

3.
水力振荡器是目前缓解定向托压最有效的方法之一。在大斜度井、大位移井、水平井等复杂结构井中应用越来越广泛,并取得了较好的应用效果。但目前没有形成一套水力振荡器合理安放位置计算方法,导致应用效果参差不齐。基于摩阻和振荡力,建立了安放位置计算模型,并制作了优选图版。现场应用效果表明,该安放位置计算方法有效可行。可为水力振荡器现场应用提供理论支持和技术指导。  相似文献   

4.
针对现有水力振荡器的阀盘接触压力高、零件冲蚀及磨损严重、自身压耗偏大,且螺杆马达工作寿命短的问题,研制了一种采用涡轮马达作为动力系统的水力振荡器。该水力振荡器通过涡轮马达将钻井液的动能转化为机械能并驱动阀系产生周期性变化的脉冲压力,该脉冲压力作用在振荡短节使工具产生周期性高频轴向往复蠕动,改变钻柱与井壁间的摩擦状态,减小摩阻、提高机械钻速和钻压传递效率。采用理论计算及滑移网格技术进行CFD仿真的方式,重点研究了阀芯的运动规律及脉冲单元压降随阀芯转角的变化关系。结果表明:阀系开口的连通和关闭改变了流场结构,使得阀系脉冲压力发生周期性变化;采用滑移网格技术可真实地模拟阀系流场结构变化所导致的压力场和速度场的变化情况,提高了水力振荡器的研制效率,并为其优化设计提供了技术支持。滑移网格技术能够满足水力振荡器理论设计的要求,并可弥补试验研究的高成本、长周期等缺陷。  相似文献   

5.
水力振荡器的研制与现场试验   总被引:7,自引:0,他引:7  
李博 《石油钻探技术》2014,42(1):111-113
为了解决水平井钻进过程中摩阻大、托压的问题,提高水平井钻井效率,研制了水力振荡器。依据机械振动理论,井下钻具在一定频率轴向振动时,可以将钻具与井壁之间的静摩擦转变为动摩擦,且动摩擦力小于静摩擦力;水力振荡器是以钻井液作为动力源,驱动振荡器轴向运动带动井下钻柱沿轴向振动。在卫 186-平142 井进行了水力振荡器现场试验,进尺501.00 m,累计工作时间96 h,托压减小20~40 kN,滑动钻进36.77 m,机械钻速提高54.9%,复合钻进464.23 m,机械钻速提高23%。现场试验结果表明,应用水力振荡器钻进时能够降低水平井摩阻,减小托压,提高机械钻速。   相似文献   

6.
在复杂结构井钻井过程中,由于摩阻转矩、粘滑、托压等影响,导致难以达到预定的靶点。近年来研制了一些辅助振动工具,例如水力振荡器、扭转冲击器等。这些工具的使用起到了提升钻进效率、延长水平段长度的作用。建立了在轴向激励作用下钻柱的瞬态动力学模型,该模型包括1个一维动力学模型和1个三维静态模型。运用该模型可预测复杂三维井眼轨迹和激励作用下钻柱的力学行为。分析了振幅、频率、摩擦因数、传播距离等影响因素,推导出了加入振动激励后钻柱和井壁之间的表观摩擦因数,并计算了振荡类工具的合理安放位置。该模型和计算结果为水力振荡器的设计和现场应用提供了理论依据。  相似文献   

7.
随着水平井和大斜度井在油气开采中的广泛应用,钻进过程中钻柱与井壁之间摩阻较大时常产生托压现象,导致无法有效施加钻压,影响机械钻速,甚至诱发黏吸卡钻等井下事故。水力振荡减阻技术采用水力振荡器在钻具轴向产生一定频率和振幅的振动,将静摩擦力转变为动摩擦力,以减少钻具与井壁之间的摩阻,具有良好的发展前景。从振动减阻的原理、国内外水力振荡器典型结构、关键技术等方面系统分析了国内外水力振荡器的研究现状,指出现有水力振荡器存在的问题,提出应发展涡轮动力水力振荡器的建议,可为该技术的发展和提高提供参考依据。  相似文献   

8.
在大斜度井中,轴向力传递通常成为问题。为了减少摩阻并实现轴向力的连续传递,最新的减阻技术是水力脉冲诱发轴向振荡钻井技术,为此开发设计了一种水力脉冲轴向振荡减阻工具。介绍了该轴向振荡减阻工具的总体结构及技术特点、关键零部件的设计加工、动力马达基本结构参数合理配比优化、盘阀过流面积模拟、花键心轴表面处理技术及计算机辅助设计分析、碟形弹簧组合设计计算等。室内及现场试验表明:该工具性能可靠,能够解决托压的问题,减阻提速效果明显。  相似文献   

9.
针对目前定向井段和水平段钻进过程中为提高机械钻速使用水力振荡器出现的问题,分析了水力振荡器的研究现状与现场应用状况。首先介绍了国内外不同水力振荡器的结构,分析了其优缺点;然后结合现场资料,通过实例对比了水力振荡器和旋转导向钻井工具的提速效果;最后针对水力振荡器在应用时出现的一系列问题给出了相关建议。现场应用效果统计资料表明,水力振荡器能降低摩阻,提高机械钻速,缩短钻井周期,降低钻井成本,与旋转导向工具相比,机械钻速可提高29.8%,钻井成本可降低38万元。但存在实际工作排量达不到设计要求、安放位置不合理、自身压耗高、损坏MWD等精密仪器和耐冲蚀性偏差等问题,严重影响了水力振荡器的应用。为解决这些问题,需要对水力振荡器进行持续完善和改进。   相似文献   

10.
《石油机械》2016,(1):25-28
水力振荡器性能与其振荡频率、压降、流量和阀盘参数相关。为此,开展了阀盘参数对水力振荡器性能影响的试验研究,得到如下结论:1当水力振荡器的动阀尺寸及螺杆型号一定时,在相同定阀阀口直径下,流量越大,压降越大;在相同流量下,定阀阀口直径越大,压降越小。2当动阀尺寸及螺杆型号一定且定阀阀口直径相同时,流量越大,振荡频率越大;在相同流量下,定阀阀口直径对振荡频率的影响很小,也即定阀阀口直径对阀闭合频率影响很小,决定阀闭合频率的主要因素为螺杆自身结构。3当动阀尺寸及螺杆型号一定时,振荡频率与流量呈线性关系。研究结果可为水力振荡器的结构优化及现场应用提供理论依据。  相似文献   

11.
本文分析了分馏塔塔体与热膨胀系数的关系、变形原因、处理方法。  相似文献   

12.
13.
肖涤  刘忠友 《石化技术》2002,9(3):138-141
通过宏观检查,金相组织检验及裂纹断口观察,分析了制硫车间解吸塔(C-403/2)塔体裂纹产生的原因,并提出更换新塔的对策。  相似文献   

14.
15.
16.
17.
齐静  赵智 《石油规划设计》2002,13(6):134-135
2000版ISO 9000族标准拟定了一个行之有效的现代经营战略——顾客满意战略。建筑企业要处处体现以顾客满意为中心和主线的质量策划和质量控制。项目管理要靠科技进步提高效率,依靠先进的施工方法,坚持管理创新,走质量效益型发展道路。通过强化过程控制,以过程精品塑造精品工程。  相似文献   

18.
苯乙烯环氧化制环氧苯乙烷的研究   总被引:19,自引:2,他引:17  
环氧苯乙烷是重要的有机中间体,主要用于香料,制药工业。环氧苯乙烷主要由苯乙烯环氧化制得,本文介绍了卤素法,过氧化物法,氧气或空气环氧化法以及相应的催化剂。  相似文献   

19.
20.
利用地震、测井及录井资料,采用回剥技术及断失量的趋势分析方法,恢复了古近系沙河街组三段下亚段沉积时期青东凹陷的构造-古地貌,并阐明了构造-古地貌对沉积体系的控制.受郯庐断裂及其派生断裂的控制,沙三下亚段沉积时期青东凹陷呈现整体沉陷,为一东断西超的箕状断陷.凹中发育3个近东西向的次隆,将青东凹陷分隔为4个次洼,由南至北,次洼的规模逐渐扩大.受构造-古地貌的控制,沙三下亚段青东凹陷的东部发育扇三角洲,西部和南部发育辫状河三角洲,三角洲沉积体系的主体发育部位明显受次洼的控制.由于凹陷规模小,物源供应充分,扇三角洲和辫状河三角洲的砂质沉积不同程度超覆于次隆之上,次隆地带水浅浪强,形成规模不等的砂质滩坝.发育于东部断坡带的三角洲砂体,发育于西部缓坡带的辫状河三角洲砂体,以及发育于次隆地带的砂质滩坝砂体均具有较好的储集条件和较好的圈闭背景,是油气勘探的重要目标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号