首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以3-氯-2-羟丙基三甲基氯化铵(CTA)对壳聚糖(CTS)进行季铵化改性,制备了壳聚糖季铵盐(CTA-CTS),用其和聚合氯化铝(PAC)复配对高岭土悬浮液进行絮凝处理.考察了复合絮凝剂的质量配比、沉降时间、pH值对絮凝性能的影响.最佳絮凝条件为:壳聚糖季铵盐用量为2 mg/L、m(PAC):m(CTA-CTS)=1...  相似文献   

2.
制备季铵型壳聚糖插层蒙脱土,采用红外光谱、X-射线图谱和扫描电镜分析研究表明,壳聚糖季铵盐—2-羟丙基三甲基氯化铵壳聚糖进入到了蒙脱土的层间,使层间距增大,形成了插层复合物。利用所得产品对含Cr(Ⅵ)水样进行处理,在pH为4、吸附t为100 min、吸附剂质量浓度为2 g/L和Cr(Ⅵ)初始质量浓度为50 mg/L的优化条件下,季铵型壳聚糖插层蒙脱土复合吸附剂对Cr(Ⅵ)的吸附量为5.61 mg/g,去除率为89.73%。季铵型壳聚糖插层蒙脱土复合吸附剂对Cr(Ⅵ)的吸附符合Langmuir吸附模型。  相似文献   

3.
壳聚糖季铵盐对高岭土悬浮液的絮凝处理   总被引:1,自引:0,他引:1  
介绍了以3-氯-2-羟丙基三甲基氯化铵(CTA)为改性剂接枝改性壳聚糖,制备了2-羟丙基三甲基壳聚糖季铵盐。用其处理高岭土的悬浮液,讨论了沉降时间、壳聚糖季铵盐的用量、pH值对高岭土悬浮液絮凝效果的影响。结果表明,当沉降18 min,壳聚糖季铵盐添加量为8 mg/L,pH=4时,絮凝效果最好,污水的浊度值可降至1.2。  相似文献   

4.
壳聚糖季铵盐对啤酒污水的絮凝研究   总被引:2,自引:0,他引:2  
王香爱 《化工科技》2008,16(1):19-22
介绍了以3-氯-2-羟丙基三甲基氯化铵为改性剂接枝改性壳聚糖,制备了2-羟丙基三甲基壳聚糖季铵盐。用其对啤酒污水进行了絮凝处理,讨论了沉降时间,壳聚糖季铵盐的用量,pH值对啤酒污水絮凝效果的影响。结果表明:当沉降时间t=18 min,壳聚糖季铵盐添加量为10 mg/L,pH=8时,絮凝效果最好,污水的浊度值可降至3.5。  相似文献   

5.
季铵化N,O-羧甲基壳聚糖的制备及其合成条件优化   总被引:1,自引:0,他引:1  
以N,O-羧甲基化度为85.6%的羧甲基壳聚糖(CM-CTS)为原料,w=0.40的NaOH水溶液为催化剂,3-氯-2-羟丙基三甲氯化铵(CTA)为接枝改性剂,在异丙醇介质中制备了具有良好水溶性的两性壳聚糖-季铵化N,O-羧甲基壳聚糖;分别以产物对模拟废水中的Cd+和Cr(Ⅵ)的絮凝去除率为基准对两性壳聚糖的合成条件进行了优化;用IR和1H NMR对产物的结构进行了表征。研究结果表明产物Cr(Ⅵ)的去除率更适宜作为合成条件的优化基准,且对应的优化条件为:季铵化反应时间为10.0 h,反应温度为60.0℃,mNaOH/mCM-CTS=0.50,mCTA/mCM-CTS=1.5;在此条件下合成产物对Cr(Ⅵ)的最大絮凝去除率为93.16%,对Cd2+的最大絮凝去除率98.52%。  相似文献   

6.
2-羟丙基三甲基氯化铵壳聚糖的制备及其表征   总被引:18,自引:0,他引:18  
蔡照胜  王锦堂  杨春生  许琦  严金龙 《精细化工》2004,21(9):655-657,673
以脱乙酰度为90%的壳聚糖(CTS)为原料,异丙醇为溶剂,w(NaOH)=40 0%的水溶液为催化剂,3 氯 2 羟丙基三甲基氯化铵(CTA)为改性剂,在m(NaOH)∶m(CTS)=1 0∶1 0,m(CTA)∶m(CTS)=4 0∶1 0,反应温度65 0℃下制备了2 羟丙基三甲基氯化铵壳聚糖(HTCC)。实验结果表明,在反应时间达到或超过9 0h时,得到的HTCC产品的接枝度超过90 0%,在pH=6 7~7 0的水中可完全溶解形成w(HTCC)=3 0%的溶液。IR和1HNMR的结果表明,接枝反应主要发生在CTS的氨基上。  相似文献   

7.
采用高分子重金属絮凝剂交联淀粉-接枝丙烯酰胺-共聚黄原酸酯(CSAX)絮凝去除废水中的Cr(Ⅵ)和总铬,研究了Cr(Ⅵ)和总铬的去除机理及影响的因素。实验发现:pH值在2~5范围内,pH值越低越有利于Cr(Ⅵ)的去除;pH值越高越有利于总铬的去除;分段调节pH值絮凝可显著提高Cr(Ⅵ)和总铬的去除率,对Cr(Ⅵ)去除率可达99.9%,对总铬的去除率可以达到96.5%;铝盐复配对总铬的去除影响不大,去除率略有提高。结果表明,用CSAX絮凝法去除Cr(Ⅵ)和总铬,操作简便易行,效果好。  相似文献   

8.
分别以亚硫酸氢钠和亚硫酸钠为还原剂,以氢氧化钠和氢氧化钙为沉淀剂,采用还原沉淀法处理电镀废水中的铬。研究表明:以亚硫酸氢钠为还原剂、以氢氧化钙为沉淀剂时,电镀废水中铬的去除效果最好。采用单因素试验研究了亚硫酸氢钠的用量、还原反应pH值等对废水中Cr(Ⅵ)去除效果的影响。当亚硫酸氢钠用量为理论用量的1.75倍、还原反应pH值为2时,Cr(Ⅵ)的去除率达到99.35%,处理后废水中Cr(Ⅵ)的质量浓度为0.13mg/L。以氢氧化钙为沉淀剂、沉淀反应pH值为8时,处理后废水中总铬的质量浓度为0.26mg/L。在最佳工艺条件下,处理后废水中Cr(Ⅵ)的质量浓度、总铬的质量浓度及出水pH值均满足《电镀污染物排放标准》(GB 21900—2008)中规定的要求。  相似文献   

9.
采用以铁板为电极材料的电絮凝装置处理含铬电镀废水。研究了电流密度、絮凝时间、初始pH值等工艺条件对废水中Cr(Ⅵ)去除率的影响。结果表明:当电流密度为20mA/cm~2、絮凝时间为40min、初始pH值为4~6时,对废水中Cr(Ⅵ)的去除效果较好。采用活性炭吸附法对电絮凝出水进行深度处理,处理后废水中Cr(Ⅵ)的质量浓度、总铬的质量浓度、出水pH值均满足《电镀污染物排放标准》(GB 21900—2008)中相关的排放标准限值要求。  相似文献   

10.
针对纳米零价铁(nZⅥ)易团聚、氧化等缺陷,基于液相还原法,本文利用具有层状结构的铁氨基黏土纳米材料(FeAC)改性nZⅥ用于去除电镀废水中的Cr(Ⅵ)。考察了材料配比组成、投加量、初始pH值对体系去除Cr(Ⅵ)的影响,也研究了改性材料去除实际含铬废水的能力。研究表明:FeAC的加入有利于提高吸附材料的分散性与稳定性,削弱nZⅥ的团聚与氧化问题;当Cr(Ⅵ)浓度为20 mg·L-1,FeAC与nZⅥ的质量配比为1:5且投加量为0.250 g·L-1时,改性纳米材料对Cr(Ⅵ)的去除效果最佳;废水中存在的Cu2+、Ni2+均对改性材料去除Cr(Ⅵ)有明显的促进作用,且对实际含铬废水也保持稳定的去除能力。  相似文献   

11.
刘学民  吕春绪  叶志文 《江苏化工》2005,33(Z1):173-175
以环氧氯丙烷、三甲胺和浓盐酸为原料,常温合成了中间体3-氯-2-羟丙基三甲基氯化铵.用正交实验方法研究了反应物质量分数、反应溶液的pH、环氧氯丙烷与三甲胺盐酸盐摩尔比对产物质量分数的影响,确定的最佳工艺条件为反应溶液的pH=8,n(环氧氯丙烷)∶n(三甲胺)=0.95∶1.00,w(HCl) = 36%.替代传统的减压蒸馏,采用水蒸气蒸馏的方法对其进行纯化,纯化后的产品中w(环氧氯丙烷)≤0.0005%,w(1,3-二氯-2-丙醇)≤0.002%,w(3-氯-2-羟丙基三甲基氯化铵)=69%,收率>96%.将此中间体同十二烷基苯磺酸反应得到了高收率的3-氯-2-羟丙基三甲基十二烷基苯磺酸铵型植物生长调节剂.  相似文献   

12.
以木质素磺酸钠(LS-Na)为基础,通过接枝共聚反应引入阳离子单体丙烯酰氧乙基三甲基氯化铵(DAC),制备了改性木质素基水凝胶(MLH),利用傅立叶变换红外光谱仪(FTIR)和扫描电镜(SEM)对其结构进行了表征,并研究了其对模拟混合废水中Cr(Ⅵ)和甲基橙的竞争吸附作用及影响因素,同时开展了吸附动力学和等温吸附模型研究。结果表明,在pH值为5、MLH投加量为0.10 g、初始浓度为200 mg·L-1、温度为30℃的条件下,Cr(Ⅵ)和甲基橙的吸附量分别为54.14 mg·g-1和42.91 mg·g-1;MLH对Cr(Ⅵ)和甲基橙的吸附过程符合准二级动力学方程和Freundlich等温吸附模型,Cr(Ⅵ)和甲基橙在MLH表面存在竞争吸附,且Cr(Ⅵ)更具被吸附优势;模拟混合废水中无机盐离子的存在会抑制MLH对Cr(Ⅵ)和甲基橙的吸附;MLH具有较好的重复再生性能。  相似文献   

13.
以香蕉皮(BP)为原料,脱色后通过3-氯-2-羟丙基三甲基氯化铵改性制备新型香蕉皮生物吸附剂MBP。采用扫描电镜对吸附剂进行表征。经改性后,同等条件下MBP比BP的吸附量提高。考察溶液pH、吸附剂用量、金属离子浓度和吸附时间对其从水溶液中吸附Cr(Ⅵ)的吸附性能的影响。结果表明,最佳的溶液pH值为2.0,最佳吸附剂用量4-5 g/L。MBP对Cr(Ⅵ)的吸附量随溶液中金属离子浓度的增加而增加,吸附等温线符合Langmuir单分子层吸附模型,MBP在40℃对Cr(Ⅵ)的最大吸附量为58.82 mg/g;MBP对Cr(Ⅵ)的吸附,在150 min时基本上达到吸附平衡,吸附动力学符合准二级动力学方程。  相似文献   

14.
为改善膨润土对Cr(Ⅵ)的吸附性能,并提高其固液分离回收能力,研究构筑了一种壳聚糖修饰的复合磁性吸附材料——磁性柠檬酸膨润土(Magnetic Citric Acid Bentonite,MCAB),并利用SEM、XRD、VSM、FT-IR对改性前后的材料进行表征对比,结果表明壳聚糖中的-NH_2、-OH等功能基团及磁性Fe_3O_4微粒均负载到柠檬酸膨润土(Citric Acid Bentonite,CAB)上。MCAB对Cr(Ⅵ)的吸附性能研究结果显示:相对于CAB,复合后的MCAB吸附性能明显提高,并具有良好的磁分离能力;p H值对Cr(Ⅵ)的吸附影响较大,最佳p H值在2.0~3.0;当吸附剂投加量为1.6 g·L-1、p H值为3.0、Cr(Ⅵ)的初始浓度为10 mg·L~(-1)时,MCAB对Cr(Ⅵ)的去除率高达99%;吸附等温方程和动力学方程的拟合结果分别符合Langmuir吸附等温模型和准二级动力学模型。由于MCAB上修饰的-NH2在酸性条件下易质子化,会增强对Cr(Ⅵ)的静电吸引作用,因此MCAB对Cr(Ⅵ)的吸附去除率得到了明显提高;同时,加磁赋予了CAB快速的固液分离能力。研究表明MCAB对模拟废水中的Cr(Ⅵ)去除效果良好,有望应用于实际废水中Cr(Ⅵ)的去除。  相似文献   

15.
用2,3-环氧丙基三甲基氯化铵对壳聚糖进行改性得到壳聚糖季铵盐,进一步通过乳化交联法合成壳聚糖季铵盐微球,采用傅里叶变换红外光谱(FT-IR)、差热热重分析(TG-DTG)、X-衍射衍射(XRD)和扫描电镜(SEM)对其进行表征分析。此外,研究了壳聚糖季铵盐的浓度、油水比、交联剂用量对合成的壳聚糖季铵盐微球吸附Cr(Ⅵ)性能的影响,并考察了重铬酸钾初始浓度、pH值、壳聚糖季铵盐微球添加量对Cr(Ⅵ)吸附效果的影响。结果表明:HACC浓度为0.8%(w/V)、油水比为8∶1、壳聚糖季铵盐与交联剂质量比为1.64的条件下,可以制备出球型圆整、分散性好的壳聚糖季铵盐微球。在酸性条件和较低浓度的重铬酸钾均有利于壳聚糖季铵盐微球对Cr(Ⅵ)的吸附。  相似文献   

16.
在紫外灯的照射下,以Fe(Ⅲ)-草酸盐配合物处理含Cr(Ⅵ)废水,考察了溶液pH值、Fe(Ⅲ)浓度、草酸盐浓度、Cr(Ⅵ)初始浓度对废水处理效果的影响.结果表明,在3.0~6.0的范围内,废水pH=3.0时,Cr(Ⅵ)先化学还原速率最快;在一定的Fe(Ⅲ)和草酸盐浓度比范围内,光化学还原速率随Cr(Ⅵ)浓度的增加而变缓,但随着Fe(Ⅲ)和草酸盐浓度的增加而加快.在pH=3.0、Cr(Ⅵ)浓度为1 mg·L-1、[Fe(Ⅲ)]/[C2O42-]=10∶96(μmol稬-1∶μmol稬-1)的最佳条件下,先还原速率最快,较短时间内的Cr(Ⅵ)还原率可达到100%.  相似文献   

17.
本论文对比了壳聚糖稳定纳米零价铁、普通纳米零价铁和普通铁粉对水中Cr(Ⅵ)的去除效果,并通过单因素批量实验,考察了Cr(Ⅵ)初始浓度、体系温度、体系pH值对Cr(Ⅵ)去除效率的影响。  相似文献   

18.
3-氯-2-羟丙基三甲基氯化铵的合成   总被引:3,自引:0,他引:3  
王香爱  王淑荣 《应用化工》2007,36(12):1190-1193
采用以无水乙醇作溶剂,三甲胺盐酸盐(TMAHC)和环氧氯丙烷(ECH)为原料合成3-氯-2-羟丙基三甲基氯化铵。通过研究,探索出3-氯-2-羟丙基三甲基氯化铵的较佳合成条件为:n(ECH)∶n(TMAHC)=0.95∶1,反应温度40~50℃,反应时间0.5 h,溶液pH=8,所得产品纯度>98%。收率可达90%(以ECH计),杂质含量小于美国DOW公司生产的同类产品。以乙醇法合成3-氯-2-羟丙基三甲基氯化铵工艺简单,耗能较少,溶剂可循环使用,产品性能优良,使用效果好。  相似文献   

19.
赵红建  赵文霞  张卓  马富 《应用化工》2019,(6):1283-1286
以农业废弃物荞麦壳与硫酸亚铁为原料,通过原位炭化还原法一步制备复合多孔炭材料。采用XRD、SEM等表征手段,考察了所得材料的物化性能。考察硫酸亚铁浓度、炭化温度和Cr(Ⅵ)水溶液pH值对Cr(Ⅵ)去除性能的影响。结果表明,制备的样品为负载FeS/Fe_2O_3/Fe_3O_4的无定形多孔炭。样品在pH=2时表现出优良的Cr(Ⅵ)去除性能;在相同pH值的Cr (Ⅵ)溶液中,浸渍荞麦壳粉的FeSO_4浓度越高、样品焙烧温度越高,所得FeS/Fe_2O_3/Fe_3O_4荞麦壳基多孔炭对Cr(Ⅵ)去除量越大。  相似文献   

20.
在高压汞灯照射下,Fe(Ⅲ)-草酸盐配合物体系能够对含Cr(Ⅵ)的模拟废水进行光化学还原处理。在Cr(Ⅵ)初始浓度0.5-2.0mg/L范围内,光化学还原反应速率随浓度增加而减小。在废水pH值为3.0-6.0的范围内,pH=3.0时,光化学还原速率最快。在实验选择的[Fe(Ⅲ)]和草酸盐浓度范围内,Fe(Ⅲ)和草酸盐浓度的增加可提高Cr(Ⅵ)的光化学还原效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号