首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
利用共沉淀法合成的粉体, 通过真空烧结结合热压烧结后处理制备了掺镱的氟化钙透明陶瓷(Yb:CaF2)。在600 ℃预烧1 h, 700 ℃热压烧结2 h制备的5at%Yb:CaF2透明陶瓷在1200 nm处的直线透射率达到92.0%。对陶瓷的显微结构、光谱特性和激光性能进行了测试和讨论。研究结果表明, 陶瓷样品的显微结构均匀, 平均晶粒尺寸为360 nm。此外, 计算得到Yb:CaF2陶瓷在977 nm处的吸收截面和1030 nm处的发射截面分别为0.39×10 -20和0.26×10 -20cm 2。最后, 对Yb:CaF2陶瓷激光性能进行了表征, 得到最大输出功率为0.9 W, 最大斜率效率为23.6%。  相似文献   

2.
Yb:YAG透明陶瓷由于具有宽的吸收带和发射带、高增益、低的热负载、长的荧光寿命、高的量子效率等优点而成为有应用前景的高功率固体激光器用增益介质。本研究优化了粉体的性能并制备了高透明的Yb:YAG陶瓷。以碳酸氢铵为沉淀剂,分别以纯水或乙醇/水混合物为溶剂,采用共沉淀法合成了5at%Yb:YAG纳米粉体。在1250℃下煅烧4h得到的所有粉体均为纯YAG相。与纯水溶剂制备的粉体相比,醇水溶剂制备的粉体具有更小的平均晶粒尺寸和更低的团聚程度。以醇水溶剂制备的粉体为原料,采用真空烧结法在不添加烧结助剂的情况下成功制备了5at%Yb:YAG透明陶瓷,并对1500~1825℃烧结20 h和1800℃烧结10~50 h所得陶瓷的微观结构和直线透过率进行了探究。除在1825℃下烧结20 h所得的陶瓷外,其余的5at%Yb:YAG陶瓷都具有均匀的微观结构。在1800℃下烧结50 h制备的5at%Yb:YAG陶瓷具有最高的光学质量,在1100和400 nm处的直线透过率分别为78.6%和76.7%(样品厚度为2.2mm)。该Yb:YAG透明陶瓷在937nm处的吸收截面为5.03×10~(–21)cm~2,在1031nm处的发射截面为13.48×10~(–21) cm~2。  相似文献   

3.
Nd:Lu_2O_3材料由于具有高热导率、低声子能量和优异的光学特性而成为非常有前景的高功率固体激光器用的增益介质。但Lu_2O_3单晶的熔点超过2400℃,难以生长,而Lu_2O_3陶瓷既能在低温下制备,又具有与晶体相当的光学性质和激光性能从而备受关注。本研究制备了高透明的Nd:Lu_2O_3陶瓷并对其光学性质和激光性能进行探究。以共沉淀法制备的纳米粉体为原料,采用真空烧结结合热等静压(HIP)两步烧结法制备了1.0at%Nd:Lu_2O_3透明陶瓷。对制备的粉体、素坯和陶瓷的微结构进行了表征:HIP后处理的陶瓷平均晶粒尺寸是724.2nm。厚度为1.0mm的1.0at%Nd:Lu_2O_3透明陶瓷在1100 nm处的直线透过率是82.4%,样品在806 nm处的吸收截面为1.50×10~(–20) cm~2,而根据荧光光谱计算得到的发射截面为6.5×10~(–20) cm~2。分别在878.8和895.6 nm波长激发下, 1.0at%Nd:Lu_2O_3透明陶瓷~4F_(3/2)→~4I_(11/2)跃迁的平均荧光寿命均为169ms。当输出耦合镜的透过率TOC=2.0%时,退火后的1.0at%Nd:Lu_2O_3透明陶瓷获得了最大输出功率为0.47 W的准连续(QCW)激光输出,斜率效率为8.7%。本研究成功制备了显微结构均匀、高透明度的1.0at%Nd:Lu_2O_3陶瓷,并展示了其在固体激光增益介质领域的广阔应用潜力。  相似文献   

4.
Yb:YAG透明陶瓷由于具有宽的吸收带和发射带、高增益、低的热负载、长的荧光寿命、高的量子效率等优点而成为有应用前景的高功率固体激光器用增益介质。本研究优化了粉体的性能并制备了高透明的Yb:YAG陶瓷。以碳酸氢铵为沉淀剂, 分别以纯水或乙醇/水混合物为溶剂, 采用共沉淀法合成了5at%Yb:YAG纳米粉体。在1250 ℃下煅烧4 h得到的所有粉体均为纯YAG相。与纯水溶剂制备的粉体相比, 醇水溶剂制备的粉体具有更小的平均晶粒尺寸和更低的团聚程度。以醇水溶剂制备的粉体为原料, 采用真空烧结法在不添加烧结助剂的情况下成功制备了5at%Yb:YAG透明陶瓷, 并对1500~1825 ℃烧结20 h和1800 ℃烧结10~50 h所得陶瓷的微观结构和直线透过率进行了探究。除在1825 ℃下烧结20 h所得的陶瓷外, 其余的5at%Yb:YAG陶瓷都具有均匀的微观结构。在1800 ℃下烧结50 h制备的5at%Yb:YAG陶瓷具有最高的光学质量, 在1100和400 nm处的直线透过率分别为78.6%和76.7%(样品厚度为2.2 mm)。该Yb:YAG透明陶瓷在937 nm处的吸收截面为5.03×10-21 cm2, 在1031 nm处的发射截面为13.48×10-21cm2。  相似文献   

5.
以高纯Y2O3, α-Al2O3, Yb2O3粉体作为原料, 采用固相反应和真空烧结法(1750 ℃, 30 h)制备了高光学质量的Yb:YAG透明陶瓷。5.0at% Yb:YAG陶瓷中Yb 3+的实测浓度为6.41×10 20 cm -3, 晶胞密度为4.65 g/cm 3。本工作重点研究了Yb:YAG陶瓷的显微结构、光谱特性和激光性能参数。场发射扫描电镜(FESEM)结果表明, Yb:YAG陶瓷的结构均匀致密、晶界干净平直, 平均晶粒尺寸为(19±3) μm。该陶瓷样品(厚度为4.0 mm)在400 nm处的直线透过率为82.5%, 在1100 nm处的透过率为85.2%。泵浦波长940 nm处的泵浦饱和光强最小, 激光波长1030 nm处的泵浦阈值功率最低, 940 nm泵浦1030 nm激光的品质因子为1.02×10 -22 cm·s。通过计算增益截面表明Yb:YAG陶瓷宽带可调谐, 是理想的激光增益材料。  相似文献   

6.
何洋  黄永前  杨芃  孙慧 《材料保护》2014,(Z1):53-55
用熔融法制备LAS透明微晶玻璃;采用DSC,XRD,SEM等测试方法,研究了透明LAS微晶玻璃的晶相组成、显微结构及热性能。结果表明:720℃核化2 h,780~900℃晶化2 h均得到β-石英固溶体微晶玻璃,晶粒尺寸在10~30 nm之间,具有优良的透明性,30~700℃的热膨胀系数在(3.50~5.92)×10-7/℃之间变化;720℃核化2 h,860℃晶化2 h得到的微晶玻璃在900℃保温10 h后透明性优良,30~700℃的热膨胀系数为3.64×10-7/℃。  相似文献   

7.
用尿素做沉淀剂制备出性能良好的透明Yb:YAG陶瓷粉体,并应用DTA-TG、XRD、SEN、红外光谱等测试手段分析其粉体结构和形貌。结果表明在1200℃煅烧过程中,失重约40%,所得到的Yb:YAG粉末结晶性能良好,粒度在150-200nm之间。而且经烧结后的陶瓷断面气孔率低,多晶晶粒尺寸在1-2μm之间。1750℃烧结后得到透光度良好的YAG陶瓷体,样品(φ10mm×2mm)在可见光范围内的透过率约75%。  相似文献   

8.
1.3at%Nd:YAG透明陶瓷的制备及激光性能研究   总被引:4,自引:0,他引:4  
以高纯氧化物商业粉体为原料, 采用固相反应和真空烧结技术, 制备了高质量的1.3at%Nd:YAG透明陶瓷. 研究了室温下Nd:YAG透明陶瓷的显微结构、光谱及激光性能. 实验结果表明, Nd:YAG透明陶瓷主要以穿晶方式断裂; 平均晶粒尺寸为15μm, 且分布均匀; 晶粒中和晶界处没有检测到杂质和气孔存在, 且成分一致, 无偏析现象. 退火后样品在激光波长1064nm处的透过率高达82.4%; 主吸收峰位于808.6nm处, 峰值吸收系数为4.45cm-1, 激光波长1064nm处的吸收系数为0.11cm-1; 主荧光发射峰位于1064nm处, 半高宽为0.82nm, 荧光寿命为258μs. 用LD端面泵浦Nd:YAG陶瓷样品(泵浦源最大输出功率为1000mW), 获得了波长为1064nm的连续激光输出, 激光阈值约530mW, 斜率效率为23.2%, 最大泵浦吸收功率为731mW时, 最大输出功率为45mW.  相似文献   

9.
本文以醇盐水解法自制的γ-Al2O3粉体为原料,利用热压反应烧结技术,在N2气氛中一步制备得到γ-AlON透明陶瓷,并着重研究了Y2O3和MgO两种氧化物烧结助剂及其含量对产物的烧结性能及透光性的影响。结果显示加入Y2O3或MgO作为烧结助剂,不但有助于促进固相反应进行,还可通过形成固溶体大大改善烧结性能。较MgO而言,采用Y2O3作为烧结助剂的产物的硬度及相对密度均更好。添加1wt%Y2O3,在1950℃热压条件下即可得到γ-AlON透明陶瓷。XRD、SEM及密度测试结果表明产物的物相组成单一、内部结构致密,其相对密度可达99.22%。IR分析结果显示该样品在1.5~4.5μm的红外波段内具有可透过性,最大透过率为18.42%(2.5μm处)。  相似文献   

10.
通过水热法和固相反应法制备了LaPO4粉体,分别在1030~1340℃和1300~1460℃范围内对粉体进行了烧结,得到了LaPO4陶瓷,研究对比了两种方法得到的陶瓷的烧结行为和微波介电性能。结果表明:和固相法相比,水热法得到的陶瓷由于粉体粒径小更易于烧结,微波介电性能更优;在1260℃条件下烧结2 h得到的水热法陶瓷具有最好的微波介电性能:介电常数为10.2,Q×f值为129704 GHz(f=10.2 GHz),谐振频率温度系数值为–58.6 ppm/℃;水热法陶瓷的Q×f值为固相法的2.47倍,烧结温度比固相法低140℃。  相似文献   

11.
采用固相反应和真空烧结技术制备了掺杂浓度为1.0at%的Nd:YAG透明陶瓷样品,并测试了样品的吸收光谱和荧光光谱.样品在主吸收峰808nm处的吸收截面为3.10×10-20cm2,主荧光发射峰位于1064nm处,实测荧光寿命为257μS.应用Judd-Ofelt理论计算了Nd3 在YAG中的强度参数Ωλ(λ=2,4,6),跃迁的振子强度、自发辐射跃迁几率、辐射寿命、荧光分支比等光谱参数.最后计算得到Nd:YAG透明陶瓷中Nd3 :4F3/2→I11/2跃迁对应的受激发射截面大小为3.81×10-19cm2.结果表明: Nd:YAG透明陶瓷具有较大的受激发射截面和高的荧光量子效率(接近100%),是一种性能优良的激光材料.  相似文献   

12.
以高纯商业Y2O3、α-Al2O3和Nd2O3粉体为原料, 以TEOS(正硅酸乙酯)和MgO为烧结助剂, 采用固相反应和真空烧结技术制备了1.0at%Nd:YAG透明陶瓷。系统研究了球磨转速(球磨时间10 h)对混合粉体的尺寸以及对陶瓷样品致密化行为、显微结构和光学性能的影响。结果表明: 通过球磨过程可以充分细化原料粉体的颗粒; 随着球磨转速的提高, 陶瓷烧结时样品中的气孔能更好地排除。但是球磨转速过高时, 陶瓷烧结体中存在少量的富铝第二相会降低样品的光学透过率。当球磨转速为130 r/min时, 真空烧结(1760℃×50 h)所得Nd:YAG透明陶瓷的微结构均匀致密, 几乎没有晶界和晶内气孔存在, 样品在1064 nm处的直线透过率高达83%。  相似文献   

13.
采用平均粒径分别为3.5 μm、1.5 μm和200 nm的碳化硼粉体为原料经1850℃热压烧结制备了碳化硼陶瓷, 研究了粉体粒径对陶瓷烧结致密化过程及其性能的影响。根据保温时间对线收缩率的影响及热压初期的塑性流动机理, 得出了不同粉体间烧结初期的激活能差。结果表明: 在相同工艺条件下, 随着粉体平均粒径的减小, 粉体的扩散激活能降低, 致密化初始温度降低, 而且完成塑性流动所需时间也会明显缩短, 致密化速率加快, 致密度增大; 碳化硼陶瓷的显微结构与力学性能亦随着粉体粒径的减小而改善; 1850℃保温1 h后, 平均粒径为200 nm的粉体制备的碳化硼陶瓷相对密度可达90.5%, 硬度为(17±1.8) GPa。  相似文献   

14.
Al2O3透明陶瓷显微结构的研究   总被引:5,自引:0,他引:5  
采用高纯Al2O3(>99.9%)粉末为原料,用无压烧结工艺制备Al2O3透明陶瓷.研究了添加剂Y2O3、烧结温度、保温时间等对Al2O3透明陶瓷显微结构和光学性能的影响.实验结果表明,适量的Y2O3能够抑制Al2O3晶粒的生长,改善烧结性能,但添加量过多会使Al2O3陶瓷气孔略有增加.在1800℃烧结的样品密度接近理论密度,具有较好的光学性能.延长保温时间能够使晶粒长大的同时有效排除晶界处少量气孔.  相似文献   

15.
采用一种简单的低温固相法制备了YF3∶Yb,Er纳米晶,重点探究了烧结温度、烧结时间对纳米晶微结构及发光性能的影响。通过XRD、SEM和FA对样品进行了表征。XRD结果表明:烧结温度达到400℃,烧结时间达到1h,即可获得正交相的YF3∶Yb,Er纳米晶;SEM分析表明:制备的YF3∶Yb,Er纳米晶呈现光滑的类球形,粒径随烧结温度升高及烧结时间增加而变大;FA结果显示:在980nm红外激光激发下,样品的可见光发射峰分别位于波长409、524、547和657nm处,其强度与烧结温度、烧结时间正相关。  相似文献   

16.
制备了高质量的Yb:YAG透明陶瓷. Yb:YAG透明陶瓷的晶粒尺寸为10μm左右且分布均匀, 晶界处和晶粒中没有杂质、气孔的存在. Yb:YAG样品中所有元素分布均匀, 不同的晶粒间, 晶粒和晶界间成分是一致的, 没有出现成分的偏析. 4mm厚样品的透过率为80%. LD泵浦获得了波长为1030nm, 最大功率为268mW的连续激光输出.  相似文献   

17.
反应烧结制备AlON透明陶瓷   总被引:2,自引:0,他引:2  
γ-AlON透明陶瓷具有优良的光学和力学性能, 可望代替蓝宝石单晶用做红外窗口和透明装甲. 采用反应烧结法制备AlON透明陶瓷, 探索了烧结助剂以及保温时间对AlON陶瓷致密化的影响. 通过X射线衍射和扫描电镜分析了陶瓷烧结体的物相及显微结构, 利用分光光度计测试了透明陶瓷的直线透过率. 结果表明: 和单掺的MgO或Y2O3相比, 以MgO和Y2O3共掺作为烧结助剂能够更好地促进AlON的致密化. 在保持Y2O3添加量为0.08wt%的情况下, 样品的透过率随着MgO添加量的增加而明显提高. 添加0.08 wt% Y2O3 +1wt% MgO作为烧结助剂的样品在1950℃保温12h后透过率(600nm处)达到约60%.  相似文献   

18.
YAG透明陶瓷具有良好的光学和力学性能, 广泛应用于激光增益介质与光学窗口等领域, 制备大尺寸/复杂形状YAG透明陶瓷是目前研究的热点与难点。作为一种新型胶态成型技术, 自发凝固成型在制备大尺寸陶瓷方面已显示出一定优势, 然而该体系存在浆料固化速率慢、素坯强度低等问题。本工作以水溶性环氧树脂乙二醇二缩水甘油醚(EGDGE)对自发凝固成型体系进行改性, 采用高温固相合成法制备了不同EGDGE含量的YAG透明陶瓷, 研究EGDGE对浆料流变性、凝胶强度、素坯孔隙率和烧结后陶瓷微结构与光学性能的影响。结果表明: 添加EGDGE有效增强了浆料的凝胶固化能力, 解决了YAG素坯干燥变形和开裂等问题。当EGDGE添加量为质量分数0.8%时, 在1700 ℃下真空烧结6 h并在1650 ℃下180 MPa热等静压烧结3 h, 成功制备了90 mm×30 mm×4.5 mm的YAG透明陶瓷, 它在1064 nm处直线透过率为80.8%。这为大尺寸/复杂形状YAG透明陶瓷的制备提供了新途径。  相似文献   

19.
以NH_4OH+NH_4HCO_3混合溶液作为复合沉淀剂,利用反向滴定共沉淀法制备了不同浓度Ce,Pr共掺杂LuAG沉淀前驱体,并研究了Pr掺杂浓度为0.25at%,Ce掺杂浓度分别为0、0.1at%、0.2at%和0.3at%的LuAG透明陶瓷的光学性能。沉淀前驱体经马弗炉1200℃煅烧2 h后所得粉体的分散性较好,一次颗粒尺寸约为60 nm。该粉体经干压和冷等静压成型后,在H_2气氛1800℃下烧结6 h制备出透明陶瓷,经双面抛光后透明陶瓷在800 nm波长处直线透过率达到82%。X射线激发的发射光谱表明,共掺使Pr离子5d-4f的发射能量传递给Ce离子,有助于提高LuAG透明陶瓷在550 nm发光中心的发光强度。0.2at%Ce和0.25at%Pr共掺杂时,透明陶瓷的发光强度达到最大。  相似文献   

20.
Ce:SrHfO3陶瓷因具有高密度和高有效原子序数, 对高能射线具有很强的阻止能力。同时, Ce:SrHfO3陶瓷还具有快衰减和高能量分辨率等优异的闪烁性能, 引起了研究人员的广泛关注。由于传统的烧结方法难以实现非立方结构Ce:SrHfO3陶瓷的透明化, 本研究采用真空长时烧结和短时真空预烧结合热等静压烧结(Hot Isostatic Pressing, HIP)方法制备Ce,Y:SrHfO3陶瓷。以金属氧化物和碳酸盐为原料, 1200 ℃下煅烧8 h可以获得平均粒径为152 nm的纯相Ce,Y:SrHfO3粉体。1800 ℃真空烧结20 h获得平均晶粒尺寸为28.6 μm的不透明的Ce,Y:SrHfO3陶瓷, 而两步烧结法可以制备光学透过率良好的Ce,Y:SrHfO3陶瓷。本研究详细分析了陶瓷致密化过程中微结构的演变, 探究了预烧结温度对Ce,Y:SrHfO3陶瓷密度、显微结构和光学透过率的影响。真空预烧(1500 ℃×2 h)结合HIP后处理(1800 ℃×3 h, 200 MPa Ar)所获得的Ce,Y:SrHfO3陶瓷在800 nm处的最高直线透过率为21.6%, 平均晶粒尺寸仅为3.4 μm。在X射线激发下, Ce,Y:SrHfO3陶瓷在400 nm处产生Ce3+ 5d-4f发射峰, 其XEL积分强度比商用锗酸铋(BGO)晶体高3.3倍, Ce,Y:SrHfO3陶瓷在1 μs门宽下的光产额约为3700 ph/MeV。良好的光学和闪烁性能可以拓宽Ce,Y:SrHfO3陶瓷在闪烁探测领域的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号