首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
面对超大规模集成电路的发展和严苛的应用环境, 从市场需求入手, 通过原位生长的方法, 将二维杂化材料 MOFs (UIO-66) 包覆在多羟基碳纳米管表面, 制备出UMT 纳米材料, 并掺入环氧基体(EP) 中, 制得UMTE 复合材 料。研究表明, 相比于纯EP, 0.5% UMTE 复合材料介电常数下降了8.7%, 介电损耗始终低于0.035 (100~107 Hz), 纳 米填料含量达到2% 时, UMTE 复合材料热导率提高了233%, 具有良好的电绝缘性、导热性。这类低介电常数、低 介电损耗、高导热的复合材料为设计微电子行业所需的环氧树脂材料提出了新的研究思路。  相似文献   

2.
采用溶液共混法制备银(Ag)/聚偏氟乙烯(PVDF)复合材料,研究了Ag粉体积分数及粒径对复合材料介电性能、击穿场强等的影响。结果表明,复合材料的介电常数随填料的体积分数的增加而增大,当Ag粉体积分数为17%时最佳,之后介电常数开始下降。在Ag粉体积含量相同条件下,添加小粒径Ag粉比大粒径Ag粉更有利于提高复合材料介电性能。X射线衍射分析结果表明,Ag在复合材料制备过程中无分解及氧化,适量填充Ag粉有助于复合材料击穿场强的提高。  相似文献   

3.
以环氧树脂 (epoxy resin, EP) 作为基体, 在多壁碳纳米管 (multi-walled carbon nanotubes, MWCNTs) 表面通过原位生长 2-甲基咪唑锌盐 (ZIF-8), 得到 ZIF-8/MWCNTs (ZCNTs) 复合材料。通过改变 EP 基体中 ZCNTs 含量, 制备 ZCNTs/EP 系列复合材料, 并对其介电、导热性能进行研究。研究结果表明, 当填料 ZCNTs 质量分数为 0.3%,频率为 102 Hz 时, ZCNTs/EP 复合材料的介电常数为 8.19; 频率为 102 ~ 107 Hz 时介电损耗始终低于 0.025。同时,ZCNTs/EP 的导热系数达到 0.467 W/(m·K), 比纯 EP 的导热系数提高了 116%, 显著提升了 ZCNTs/EP 复合材料的导热性能。  相似文献   

4.
Ultra-high molecular weight polyethylene(UHMWPE) fiber/epoxy composites were fabricated by a vacuum assisted resin infused(VARI) processing technology. The curing condition of composites was at a cure temperature of 80 ℃ for 3h in a drying oven. The characteristics of 2.5D(shallow bend-joint and deep straight-joint) structure and 3D orthogonal structure were compared. The failure behavior, flexural strength, and microstructures of both composites were investigated. It was found that the flexural property was closely related to undulation angle θ. The flexural strength of 3D orthogonal structure composite was superior to the other two structures composites with the same weave parameters and resin.  相似文献   

5.
The precursor infiltration and pyrolysis(PIP) method for preparation of BN/SiO2 composites was used to improve mechanical properties, dielectric properties and feasibility of high temperature dielectric parts with large dimensions and complex shapes. In the processing procedure, the porous BN ceramic matrix was first successfully prepared by compacting the mixed powders of B and BN and then sintering them at a certain temperature under normal pressure of N2. The polycarbosilane(PCS) solution was vacuum infiltrated into porous BN ceramics at the room temperature and then at 800℃ in the air to depolimerize out amorphous SiO2, and sintered further at 1 300℃ in N2 to get BN/SiO2 composites. The microstructure of materials was studied by means of X-ray diffraction and electron probe micro analysis. The thermo-decomposition mechanism of PCS was investigated by a TG-DTA and infrared (IR) spectrum analysis. The flexural strengths were measured by the three-point bending method. The dielectric constant and the loss tangent were measured by the wave-guide method. The results show BN/SiO2 composites were fabricated. The obtained composites posses a flexural strength of 61.96 - 93.31 MPa, the dielectric constant in the range of 3.50 - 3.78 and the order of magnitude of the loss tangent at 10^-3 , which are good for the high tempera turedielectric parts with large size and complex shapes.  相似文献   

6.
采用傅里叶变换红外光谱(FTIR)研究了双酚A型氰酸酯(BADCy)/双酚A型环氧树脂(E-51)体系的共固化机理,通过热重分析(TGA)和扫描电子显微镜(SEM)分析了复合材料的耐热性能、断面形态,并测试了材料的冲击强度和介电性能。结果表明E-51的加入对BADCy/E-51体系固化反应有促进作用,并能显著改善材料的韧性和冲击性能。当E-51含量为30%(质量分数)时,材料的冲击强度可达14.38 kJ/m2,且复合材料仍能保持良好的热稳定性和介电性能。  相似文献   

7.
The silica fiber reinforced silica and boron nitride-based composites (SiO2f/SiO2-BN) were prepared firstly via the sol-gel method and then the urea route, and the effects of oxidation treatment on the component, structure, mechanical and dielectric properties of the composites were investigated. The results show that the oxidation treatment at 450 °C will not impair the structure of boron nitride, and carbon is the main impurity with the excessive urea. The density of SiO2f/SiO2-BN composites is 1.81 g/cm3, and the flexural strength and elastic modulus are 113.9 MPa and 36.5 GPa, respectively. After oxidation treatment, the density varies to 1.80 g/cm3, and the flexural strength and elastic modulus are decreased to 58.9 MPa and 9.4 GPa, respectively. The mechanical properties of the composites are severely damaged, but they still exhibit a good toughness. The composites show excellent dielectric properties with the dielectric constant and loss tangent being 3.22 and 0.003 9, respectively, which indicates that the oxidation treatment is ineffective to improve the dielectric properties of SiO2f/SiO2-BN composites.  相似文献   

8.
The continuous fiber reinforced ceramic matrix composites have received consider-able attention for structural applications because of their excellent thermal stability, light weight, and damage tolerance imparted by the reinforcing fibers. Silica fibers, with ex-cellent ablative resistance, thermal shock damage resistance, dielectric properties, chemical stability and flexibility, are suitable for fabricating high temperature antenna window materials to meet the requirements of communication, …  相似文献   

9.
采用溶液共混法制备了高介电聚偏氟乙烯/聚苯胺复合材料,并对复合材料的微观结构、热稳定性和介电性能进行了表征和分析。结果表明:聚苯胺(PANI)在聚偏氟乙烯(PVDF)基体中分散得比较均匀,当质量分数w(PANI)达到10%时,大部分还是独立分散于PVDF基体中,只形成了少量渗流簇;虽然在PVDF中加入PANI会使复合材料的热稳定性变差,但PANI的加入有利于提高复合材料的介电常数。当w(PANI)8%时,复合材料在103Hz时的介电常数随PANI的增加而小幅增加;当w(PANI)由8%提高到10%时,复合材料的介电常数由8%时的57.7突跃至10%时的1 140。对复合材料的介电损耗来说,当w(PANI)8%时,介电损耗较低,但当w(PANI)由8%提高到10%时,介电损耗从1.07增加至12.2。  相似文献   

10.
以聚氨酯(PU)和聚偏氟乙烯(PVDF)为基体,以羟基化碳纳米管(MCNTs-OH)为填料,通过溶液共混法制备了PU/PVDF基复合材料。利用扫描电子显微镜对复合材料的微观形貌进行了表征,利用宽频介电与阻抗谱仪对复合材料的导电性和介电性能进行了测试。结果表明,在MCNTs-OH质量分数为2%, PU/PVDF质量比为1:1时,MCNTs-OH更倾向于分散在PU基体中;其在1.15 kHz的电导率达到最小值,只有78.5 nS/m;虽然该复合材料在频率1.15 kHz下的介电常数最低,但其数值仍高达393.08,而且其介电损耗也最小,低至0.31,具有良好的介电性能。  相似文献   

11.
The waterborne epoxy modified cement asphalt mortars were prepared with varying content waterborne epoxy and a constant fluidity. The effects of waterborne epoxy emulsion on water/cement ratio,compressive and flexural strength,tensile bond strength,freezing and thawing damage,corrosion resistance of cement asphalt mortar cured for 7 and 28 d have been investigated. The results show that waterborne epoxy is very beneficial to the improvement of mechianical properties and durability of cement asphalt mortar. Waterborne epoxy can improve the flowing ability of cement asphalt mortar. With the increasing of waterborne epoxy content,compressive strength,flexural strength and bond strength all have increased obviously. The modified mortar shows higher resistance to corrosion and the freezing and thawing compared with control mortar.  相似文献   

12.
电工环氧树脂的固化剂选用甲基六氢苯酐(MHHPA)酸酐体系,并对固化浇注工艺及填料改性处理固化体系进行研究.固化剂、填料等改性剂的用量,固化体系的配方配比、工艺特性等方面对固化产物电学性能、机械性能都产生一定的影响.固化体系采用环氧树脂100份,甲基六氢苯酐86份,咪唑0.8份,二氧化钛3份,偶联剂KH5501份时,固化产物抗拉强度61.972 MPa,冲击强度6.172 kJ/m^2,介电常数2.268,介电损耗角正切0.001 9,体积电阻率3.076×1015.此种环氧树脂材料可适用于高压大电流开关、高压变压器绝缘子及高压组合电器等高科技领域,满足其在电工工业领域的应用要求.  相似文献   

13.
The effect of interfacial modification on flexural strength of epoxy composites filled with modified ZrB_2-Al_2O_3 composite fillers was investigated in order to explore the stress distribution of modified composites under external load. The mechanical performance of epoxy composites filled with 0 vol%, 1 vol%, 3 vol% and 5 vol% unmodified and modified ZrB_2-Al_2O_3 fillers was characterized by three point bending(TPB) tests. The fracture surfaces of epoxy composites were observed by scanning electronic microscope(SEM). The results showed that the epoxy composite reinforced by 1 vol%modified fillers exhibited the optimal mechanical performance. According to the Von Mises stress contours simulated by finite element models(FEM) and the SEM images, it was shown that the modified ZrB_2-Al_2O_3 multiphase fillers could homogenize the stress in the epoxy composites due to the transition effect resulted from the interfacial modification layers on the surfaces of multiphase fillers. It contributed to the improvement of mechanical performance of epoxy composites further.  相似文献   

14.
Two kinds of 2.5D deep straight-joint structure ultra-high molecular weight polyethylene (UHMWPE) (twisted and original) fibers woven fabric reinforced epoxy resin composites were prepared by the hand lay-up method. Subsequently, the flexural property, microstructures, and failure mechanisms of the composites were also investigated. The average flexural strength of 2.5D deep bend-joint structure twisted fiber and original fiber woven fabric composites were 176.66 MPa and 204.45 MPa, respectively. The results of the characteristics indicated that the twist was the main factor which affected the flexural performance. Flexural property vitally relied on the strength of the fiber itself. Twist decreased the strength of the yarns, which meant that when the mechanical property of woven fabric reinforced composites was improved, the yarns must be kept straight in the woven fabric. The study are extremely valuable to guide the improvement of the mechanical property of the woven fabric reinforced composites.  相似文献   

15.
PbTiO3 / PVDF nanocomposites were prepared via in-situ growth of nanosized PbTiO3 particles in PVDF matrix by sol-gel method. Nanosized PbTiO3 grown in the composites film was characterized by X-ray diffractometry (XRD) and transmission electron mieroscopy, and the dielectric properties of the composite films prepared were measured. The distribution of PbTiO3 nanoparticles in-situ grown in the PVDF matrix was examined using a scanning electron microscope. The relative dielectric eonstant increases with increasing the weight fracture of PbTiO3 in-situ grown. In particular, the dielectric loss monotonically decreases with the increase of PbTiO3 content at 1 MHz.  相似文献   

16.
用PVDF分别与5种具有不同介电常数的陶瓷粉体:PMN、PNL、PLS、P4-3、P8制备压电复合材料。首先,将PVDF用N,N-二甲基甲酰胺溶解,加入一定体积比例的陶瓷粉体,搅拌状态下烘干,热压成片状,旋涂银电极,极化,最后测量其压电和介电性能。研究陶瓷组元介电性能和复合材料性能的关系。结果表明:在极化过程中陶瓷组元的低介电性有助于增强其所分担的极化电场,提高其极化率,制备出性能优良的压电复合材料。通过实验和理论计算,得出复合材料介电常数随陶瓷相体积分数的变化趋势。  相似文献   

17.
A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin, a 4,4’-bismaleimidodiphenymethane (BMI) and a bisphenol a dicyanate (BADCy). The properties of nano-SiO2/TDE-85/BMI/BADCy composites, such as mechanical and thermal properties, were systemically investigated in detail by mechanical measurement, scanning electron microscope (SEM), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The experimental results showed that the addition of the appropriate amount of nano-SiO2 could improve the impact strength and the flexural strength of the nano-SiO2/TDE-85/BMI/BADCy composites. Simultaneously, the thermal stability of the blends was found to be higher than that of the TDE-85/BMI/BADCy copolymers.  相似文献   

18.
通过微波法化学镀镍对纳米碳纤维(CNFs)进行表面改性,采用熔融共混法将表面改性的CNFs与乙烯-醋酸乙烯酯(EVA)复合制备CNFs/EVA复合材料,在模压交联过程中对复合材料施加磁场,使表面镀镍的CNFs在复合材料基体中沿磁场方向取向;用场发射扫描电子显微镜(FE-SEM),透射电子显微镜(TEM)和X射线衍射仪(XRD)观察表面改性前后CNFs表面形貌和结构、复合材料内部微观结构及取向情况;用宽频介电谱仪与阻抗谱仪对复合材料进行介电谱测试,研究了CNFs的取向与掺杂量对复合材料介电性能的影响,并用四探针法测量复合材料的体电阻率。研究结果表明,掺杂量和是否取向对复合材料介电性能影响较大;CNFs掺杂质量分数为0.5%时,取向复合材料相对介电常数最低,施加磁场取向不会增加复合材料的介电损耗,少量掺杂即可大幅降低复合材料的体电阻率。  相似文献   

19.
Using the orthogonal experimental design method involving three factors and three levels, the flexural strength and the compressive strength of copolymer grouting material were studied with different compositions of water-cement ratio (mass fraction of water to cement), epoxy resin content, and waterborne epoxy curing agent content. By orthogonal range and variance analysis, the orders of three factors to influence the strength, the significance levels of different factors, and the optimized compound ratio scheme of copolymer grouting material mixture at different curing ages were determined. An empirical relationship among the strength of copolymer grouting material, the water-cement ratio, the epoxy resin content, and the waterborne epoxy curing agent content was established by multivariate regression analysis. The results indicate that water-cement ratio is the most principal and significant influencing factor on the strength. Epoxy resin content and waterborne epoxy curing agent content also have a significant influence on the strength. But epoxy resin content has a greater influence on the 7-day and 28-day flexural strength, and waterborne epoxy curing agent content has a greater influence on the 3-day flexural strength and the compressive strength. The copolymer grouting material with water-cement ratio of 0.4, epoxy resin content of 8% (mass fraction) and waterborne epoxy curing agent content of 2% (mass fraction) is the best one for repairing of cement concrete pavement. The flexural strength and the compressive strength have good correlation, and the ratio of compressive strength to flexural strength is between 1.0 and 3.3. Foundation item: Projects(40728003, 40772180, 40802064) supported by the National Natural Science Foundation of China; Project (07JJ4012) supported by the Hunan Provincial Natural Science Foundation of China; Project(20080430680) supported by China Postdoctoral Science Foundation; Project(B308) supported by Shanghai Leading Academic Discipline Project  相似文献   

20.
Property of three-dimensional silica composites   总被引:1,自引:0,他引:1  
Silica fibers-reinforced, fused silica composites were fabricated with repeated vacuum-assisted liquid-phase infiltration. The mechanical properties, thermal properties, and ablative properties of the samples were evaluated. The effect of the silica fiber content and treatment temperature on the flexural strength of the three-dimensional SiO2 (3-D SiO2) composites also was investigated. The SiO2 composites show good mechanical properties and excellent ablative performance. The flexural strength increases with an increase in silica fiber content, and decreases with an increase in treatment temperature. When the volume fraction of the silica fiber is 50vo1% and the treatment temperature is 700℃ the flexural strength of the composites reaches a maximum value of 78 MPa. By adding cyclohexanone surfactant, the infiltration property can be largely improved, resulting in the density of SiO2 composites increasing up to 1.65 g/cm^3. The fracture surfaces of the flexural specimens observed using SEM, show that the pseudoplasticity and the toughening mechanisms of the composites are caused by absorption of a lot of energy by interface debonding and fiber pulling out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号